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Abstract 

 The purpose of this research was to synthesize basic and fundamental findings in quantum 

computing, as applied to the attack and defense of conventional computer networks. The concept 

focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic 

bomb is analogous to a landmine in a computer network, and if one was to implement it as non-

trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the 

use of landmines has been devastating to geopolitical regions in that they are severely difficult 

for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance 

of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The 

research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data 

Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual 

quantum circuit environment by implementing a Quantum Fourier Transform. The research 

focus applies the principles of coherence and entanglement from quantum physics, the concept of 

expert systems in artificial intelligence, principles of prime number based cryptography with 

trapdoor functions, and modeling radio wave propagation against an event from unknown 

parameters. This comes as a program relying on the artificial intelligence concept of an expert 

system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as 

well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here 

trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs. 

Keywords: Cybersecurity, Cynthia Gonnella, Ismael Morales, Network Defense, Quantum 

Physics, Resilience, Elliptic Curve Cryptography, Expert Systems 
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Computer Network Defense Through  

Radial Wave Functions 

The purpose of this research was to synthesize computing security principles using logic 

and mathematics to design mitigation capabilities for cyber security algorithms to mitigate 

quantum computer threats. The research focused on reverse engineering logic bombs for use as a 

defensive tool within the purview of context-specific activation and execution. The foundational 

theory of quantum Turing machine’s applications to the engineering of a cyber-security system 

was novel. Using an analysis of quantum logic phase shifts researched by Q.A. Turchette, C.J. 

Hood, W. Lange, H. Mabuchi, and H.J. Kimble as funded by the National Science Foundation 

and Office of Naval Research this mitigation system uses their findings (1995, p. 4714). The aim 

of applying the phase shifts were masking methods to simulate logic bomb attacks, and as a 

foundation for mitigation strategies. The validity of the research in the proof of concept used a 

quantum circuit virtual environment, as well as Wolfram Mathematica software.  

While normal computers work with quantum mechanics, until 2012 no traditional 

computer or conventional communication electronics were functioning quantum communication 

systems. Researchers at The Cambridge Research Laboratory in conjunction with Toshiba 

Research have succeeded in the extraction of information using quantum communication but did 

so using “ordinary telecom fibres [sic] transmitting data traffic” (Physics World, 2012, para. 7). 

This is contrary to some modern opinions of 2015 which state that algorithmic implementations 

of quantum computing in traditional computing environments are neither possible nor quantum 

computing. 

While a quantum computer uses either an electron or photon to perform the calculations it 

runs, conventional computers operate the same in the sense that they too use electrons, or 
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electricity and magnetism. In sharp contrast to traditional computers, which run series of (0) 

and(1), a quantum computer can calculate using a state called superposition where it is both (0) 

and (1). A conventional computer using the zeroes and ones creates “bits” or “bytes” while the 

quantum version is a “qubit” or even “qudit.” 

The security of quantum communication comes, then, from “entanglement” and 

“coherence.” Arthur Pittenger is professor emeritus form the University of Maryland, Baltimore 

College and alumnus of Stanford where he earned his B.S., M.S. and Ph.D., and explains when 

two photons transition to entanglement, they act the same at exactly the same time with no 

respect to distance, as long as their entanglement is coherent (Pittenger, 1999, p. 5). Since the 

Earth has a magnetic field, quantum communication with photons is difficult to keep in 

coherence. The magnetism from the Earth’s core creates a “noise” which leads to the 

entanglement becoming “decoherent.” 

A Brief History of Computation 

 In Gregory Chaitin’s chapter, titled A Random Walk in Arithmetic, Chaitin, a pioneer in 

algorithmic information theory proposed that “Turing showed that there is no set of instructions 

that you can give the computer, no algorithm that will decide if a program will ever halt” (1991, 

p. 199, para. 1). What this means is that a Turing machine, or the first concept of any computer, 

could not stop running a program with an instruction to stop at a given moment. The machine 

enters “recursion,” or an infinite loop. 

The Turing machine operates using a tape, with either (1) or (0) written on the tape. A 

head on the machine reads the tape, and at a certain bit, it either stops or changes the bit. The 

problem, called the “Halting Problem” is when a universal Turing machine, or one that can 
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calculate any given problem, is given a random problem and random instructions, therefore 

becoming a machine running on probability. 

C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. Wineland with funding from 

the Office of Naval Research and United States Army discussed the relevance of processing 

speed for classes of problems in their research (1995, p. 4714). The team of scientists under the 

direction of Monroe found that, “The most dramatic example is an algorithm presented by Shor 

showing that a quantum computer should be able to factor large numbers very efficiently” (1995, 

p. 4714, para. 2). Their conclusion, the impact on the security of conventional computers, is that 

halting affects classical computers when quantum computers can operate on the same problem 

set within seconds and halt where a normal computer cannot (Monroe, et al., 1995, p. 4714). 

Classical and Quantum Turing Machines 

David Deutsch developed a quantum Turing machine (QTM) in 1985 based upon a 

Turing machine (1985, pp. 97-117). The article, as published by the proceedings of the Royal 

Society, argued that an implicit physical assertion existed within the Church-Turing thesis 

(Deutsch, 1985, p. 97). Deutsch extended this further by explicitly stating, “…every finitely 

realizable physical system can be perfectly simulated by a universal model computing machine 

operating by finite means” (1985, p. 97, para. 1). This contradicted the traditional understanding 

of the Halting Problem since any Turing machine that is universal, said to be “Turing Complete” 

cannot operate within Deutsch’s boundaries using finite means. In order for a finitely operating 

machine to calculate all physically realizable systems, it requires the use of quantum mechanics. 

Normal, everyday computers do use quantum mechanics, but not the way a quantum computer 

uses quantum mechanics. 
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Pittenger explains quantum mechanics by sharing a story about Albert Einstein’s 

frustration with it since probability is the only way to begin an understanding of quantum 

mechanics (1999, p. 5). According to Pittenger, Einstein decidedly thought quantum mechanics 

was fundamentally incomplete (1999, p. 5). This led to Einstein’s statement that, “God doesn’t 

play dice.” Meaning physical reality should be entirely predictable with high levels of accuracy, 

not degrees of confidence. 

The fundamental part of quantum mechanics for computing are the gates researched by 

Monroe and their fellow team members (1995, pp. 4714-4717). The gate is of an XOR form 

using negation on qubits (Monroe, et al., 1995, p. 4714). An XOR logical operation done by 

traditional computers takes a bit value, and either accepts or rejects in response based on the 

value of the bit. The concept behind an XOR gate is based on the “exclusion” of an “either/or” 

logical operation. Applied to computation, the XOR function is true only if (𝐴) and (𝐵) are 

either true or false, and if only one is true, the XOR is true. 

The demonstration of a quantum inference based on XOR involved the use of a 

Controlled-NOT gate from quantum logic principles (Monroe, et al., 1995, p. 4714). The 

interpretation is an entangled state of two spin-up particles ⟨11| ↑↑⟩ shifting phases into a 

superposition of spin-up and spin-down⟨01| ↓↑⟩. Monroe with their colleagues succinctly cover 

the principle, “[the target qubit]...is flipped depending on the state of the ‘control’ qubit” 

(Monroe, et al., 1995, p. 4714, para. 3). This means that either a photon (packet of light) or an 

electron (a negatively charged particle separated from an atom) can be targeted and manipulated 

to do what normal computers do, only better. Equation 1 shows the ground state of a qubit. 

|00⟩             (1) 
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Equations 2-6 from the work of Monroe and the research team demonstrate C-NOT gates, 

which are a quantum logic operation (Monroe, et al., 1995, p. 4715): 

|0⟩|  ↓⟩ → |0⟩| ↓⟩          (2) 

|0⟩|  ↑⟩ → |0⟩| ↑⟩          (3) 

|1⟩|  ↓⟩ → |1⟩| ↑⟩           (4) 

|1⟩| ↑⟩ → |1⟩|  ↓⟩           (5) 

{|11⟩|↑↑⟩ → |01⟩| ↓ ↑⟩}          (6) 

The Logic of Explosions Covered 

Insofar as the ability to program a logic bomb, the following pseudo-code written by 

Goodrich & Tamassio (2011, p. 177, Figure 4.2) in their introductory text to cyber security 

serves the purpose well of showing how they operate. 

{ 

if 

(trigger-condition = TRUE) 

activate bomb 

; 

} 

The application of a logic bomb as defense does require reclassification according to 

Goodrich and Tamassio as stated in their text (2011, p. 178). They stated that if a logic bomb is 

not malicious, such as the “Y2K bug,” the operation is not a logic bomb (Goodrich & Tamassio, 

2011, p. 178). While the Y2K bug did not do damage, logic bomb that are malicious still need to 

execute specific functions. A logic bomb is a program that performs a malicious action when 

activated (Goodrich & Tamassio, 2011, p. 178). The non-intentional, non-malicious “bugs” or 
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flaws in code do not qualify as logic bombs according to Goodrich and Tamassio, since the 

structure of logic bombs is not present (2011, p. 178). Goodrich and Tamassio offer the 

following functions as necessary requirements for classifying algorithms as a logic bomb: 1) 

Trigger, 2) Target, 3) Access, 4) Arm, 5) Launch Payload, and 6) Cover Process. 

 These six subroutines form the case of Tim Lloyd as acting against Omega Engineering 

Corporation in 1996 (Goodrich & Tamassio, 2011, p. 178). While the use of logic bombs make 

for good Hollywood movies such as in the first Jurassic Park film where a programmer is able to 

steal embryos from his employer by using a logic bomb attack, the Omega case shows the actual 

threats posed by such malicious activity (Goodrich & Tamassio, 2011, p. 178). Thankfully, the 

evidence gathered by the U.S. Secret Service proved beyond a reasonable doubt that Lloyd 

intentionally programmed a logic bomb within a server under his administration. Lloyd was 

guilty of a cybercrime by violating the Computer Fraud and Abuse Act according to the United 

States’ law. He is guilty of exceeding authorized use of a computer network. 

Understanding the Quantum Problem 

The purpose of quantum mechanics is to inform us of the correct method to construct 

operators corresponding to physical quantities of which we aim to measure, according to Harvard 

alum and Fulbright lecturer Jay Anderson (2002, p. 3). The meaning behind the methods of 

quantum mechanics is to explain, with strong accuracy, how the physical universe operates 

according to fundamental laws. Part of the intersection between mathematics and physics are the 

concepts of a vector and scalar. A scalar is one-dimensional, while a vector is a physical value 

that follows in a direction and has magnitude. 

The roots of quantum mechanics itself, comes from two different viewpoints signifying 

two analogous mathematical approaches to eigenvalue problems, where an eigenvalue problem 
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leads to an eigenfunction, which may be an eigenvector (Anderson, 2002, p. 3). A scalar is the 

dot product of two vectors (Anderson, 2002, p. 106). An eigenfunction may be an eigenvalue, 

but are also a set of functions, which are independent of one another that solve differential 

equations. P.R. Wallace, a pioneer in bringing theoretical physics to Canadian Universities in the 

second half of the 20th century, treats differential equations as explanations of the transformation 

of a function upon a variable, “…since the transforms of derivatives of a function are 

proportional to the transform of the function itself” (Wallace, 1984, p. 199). Quantum computing 

operates using gates, which according to Turchette and the team, requires entanglement and 

coherence (1995, p. 4714). When two particles enter entanglement, it means they communicate 

regardless of distance, thus the eigenvector related is different from a classical understanding of 

vectors and may be an eigenfunction. A function in general is an equation that manipulates 

variables or equations. Results reported by Network World from a speech given at a Black Hat 

conference in 2013 discuss how quantum computing may very well result in a 

“cryptoapocalypse” given the functions a quantum computer can perform (Nelson, 2015, para.1). 

The conference proceeding discusses an acute point irrespective of entanglement, but reliant on 

the factoring capabilities of quantum computers. 

The article from Network World was a summary of principles from a Black Hat 

conference on implications about quantum computing and encryption (Nelson, 2015, para. 2). 

Because of the advanced computing speed that quantum computers possess, some fear current 

cryptography will not survive in a quantum-computing world (Nelson, 2015, para. 4). According 

to Nelson, “Quantum computing already promises to make existing cryptography easily 

breakable” (2015, Security Implications, para. 16 ). The Network World reporter wrote that the 
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threat is so severe, that the National Security Agency of the United States is working towards 

“quantum resistant algorithms in the not-too-distant future” (Nelson, 2015, NSA, para. 17). 

 The goal, accorded by the National Security Agency (NSA) is to, “…provide cost 

effective security against a potential quantum computer” (2015, Background, para.3). The 

relevance of this desire on part of the NSA is critical given a “space race” currently underway 

according to a dated physics organization report (Physics World, 2013). Quantum 

communication satellites for quantum communication channels are in development by 

researchers Thomas Jennewein and Brenden Higgins working out of Cambridge and a 

department of Toshiba, which began in 2013 (Physics World, 2013, para. 1). The reasoning 

behind this is to avoid the interference from the Earth’s magnetic field. Active investigations into 

the potential of using space as a vehicle for quantum communication attenuate noise from 

Earth’s magnetic field and thus enable more coherent quantum communications (Physics World, 

2013, para. 7). In accordance with the need for algorithmic mitigation of quantum cracking, the 

resilience of cyber systems is an integral component. 

 The resilience of computer networks and cyber systems begin with active preservation 

and continuation of operations throughout attacks, according to Allan Friedman and P.W. 

Singer’s research (2014, p. 170). Friedman and Singer are active members of the Brookings 

Institute as specialists in information and cyber security. The researchers go on to state it is 

worth noting that resiliency cannot (or should not) be separated from the human element (Singer 

& Friedman, 2014, p. 172). Resilience will serve to maintain operations essential to everyday, 

civilian life, such as National Critical Infrastructure Systems (NCIS). 
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Literature Review 

 Jason Andress and Steve Winterfeld, two researchers whom hold several acclaimed 

certifications in the field of cyber security, reported that logical operations are capable of 

physical effects (Andress & Winterfeld, 2014, p. 139). Insofar as physical attacks can change 

logical operations, logical attacks can, in turn, deny or degrade physical systems (Andress & 

Winterfeld, 2014, p. 139). Even though hardware is physical, it both operates using, and enables 

logical executions (Andress & Winterfeld, 2014, p. 139). The process of enacting an attack using 

logic is the foundation of malicious software, “malware.” While there are reports nearly weekly 

of breaches, not all use malware. Resilience requires humans because some attacks use social 

engineering, where one person manipulates another to reveal data to use in an attack. In cases 

that do not use social engineering, malware can infect and destroy targeted systems. 

Turing Machines 

 The fundamental definition of a Turing machine (TM) is the transition function, (𝛿) since 

this dictates and describes how the machine processes information. This is a universally accepted 

fact explained by an MIT computer science professor Michael Sipser (1997, p. 35). Related to 

this is the analogy of a TM in quantum mechanics through applying the concept of the halting 

problem with probability (Chaitin, 1991, p. 199). The quantum randomness is not only an 

attribute of physics, but also pure mathematics (Chaitin, 1991, p. 196). Despite randomness, 

however, quantum theory does give a more “faithful reproduction” of qualitative characteristics 

of experience than any preceding theory according to Nobel Prize winning physicist Percy 

Bridgman (1964, p. 111). While wave mechanics presents characteristics of error, this does not 

speak to the accuracy of wave mechanics (Bridgman, 1964, p. 112). These concepts of wave 
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mechanics, probability, and TM can expand into a result of a multi-tape structure for a quantum 

Turing machine (QTM): 

[𝛿: (𝑄 X Γ𝐾)] → [(𝑄 X Γ𝐾) X {𝐿, 𝑅}𝐾]        (7) 

 Where (K) is the number of tapes in Equation 7 (Sipser, 1997, p. 136). Transition 

functions for non-deterministic TM’s have the form of Equation 8 according to Dr. Sipser 

(Sipser, 1997, p. 138): 

[𝛿: (𝑄 X Γ)] → [𝑝(𝑄 X Γ) X {L, R}]         (8) 

 Where computation of a non-deterministic TM is a tree, of which the branches 

correspond to (p) events of the machine from Equation 8 by modifying Sipser’s model (1997, p. 

138). A contention in structuring a QTM lies between the aforementioned chance of error in 

quantum mechanics and the fact that a true TM is not liable to error, which was a finding of 

mathematician Cole Kleene, who developed recursion theory and worked with Alan Turing. 

 The infinite memory of a TM in general allows for the computation of a value for(ℕ), or 

the natural numbers, as arguments for some (a) values or null values of (a) (Kleene, 1967, p. 

260). If, for (a), [𝑓(𝑎) = 𝐶] then it is demonstrated that the TM computes the function of (𝑎),  or 

𝑓(𝑎) and 𝑓(𝑎) is computable (Kleene, 1967, p. 260). The positive and converse of the Church-

Turing thesis is that every Turing computable function is intuitively computable and these two 

senses are equivalent (Kleene, 1967, p. 232). 

The methodology to begin engineering a QTM hinges on several key factors according to 

David Deutsch, the first person to develop a QTM. Deutsch’s advancement of the Church-Turing 

thesis for the development of his QTM proposes standards that need to be satisfied for an 

acceptable QTM (Deutsch, 1985, p. 105). Alan Turing illustrated that no set of instructions, nor 

algorithm given to a computer, will determine if a program will “halt” (Sipser, 1997, p. 160). In 
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regards to general information theory, the probabilistic relation between a signal and its source is 

a probability (p) of being in the (ith) state, the entropy of which per symbol for the machine as a 

source is: 

𝐻 = ∑ 𝑃𝑖𝐻𝑖𝑖             (9) 

 Equation 9 expresses the bits per symbol as a function of the sum of the probability 

multiplied by the entropy. The entropy, 𝐻𝑖 of state (𝑖) is in accordance with Equation 10: 

𝐻𝑖 = −∑ 𝑝𝑖(𝑗)
𝑛
𝑖=1 log (𝑝𝑖𝑗)          (10) 

 Equation 10 leads to the following summation equation: 

𝐻𝑖 = −∑ 𝑝𝑖(𝑗)log 𝑗 𝑝𝑖(𝑗)          (11) 

 The function (log 𝑥) is a function of the cause of effect "𝑥" where the actual calculation is 

a relationship between a radical and exponent relative to "𝑥"values. Robert Ash, professor 

emeritus in mathematics from the University of Illinois, wrote in 1965 how the relationships 

between a signal and noise, or interference is relative to entropy in that the higher the level of 

entropy, the higher the uncertainty is concerning a signal (1990, p. 24). Gaussian distributions 

relate to general information theory as well given the randomness of prime numbers (Ash, 1990, 

p. 240).  

Alice, Bob, and Quantum Security 

Gaussian distributions compared to any distribution with a given variance, have added 

uncertainty (Ash, 1990, p. 240). Gaussian distributions are capable of being both discrete and 

continuous in nature as communication channels (Ash, 1990, p. 240). Ash proves, that along 

with use of a Hilbert space, “It is possible to give an explicit procedure for constructing codes for 

the time-continuous Gaussian channel which maintain any transmission rate up to half the 

channel capacity with an arbitrarily small probability of error” (1990, p. 254, para. 1). 
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Ian Chant of the IEEE Spectrum website, a leading source on engineering breakthroughs 

reports that in 2014 researchers were able to transmit 32 Gigabits of data over the air using 

orbital angular momentum (para.1, 2014). Another writer for IEEE Spectrum, Alexander 

Hellemans reported in 2012 that what Chant stated was met with strong skepticism by experts 

(para. 12, 2012). What the experts self-reported to IEEE in 2012 was done during the time that 

Toshiba and Cambridge were using quantum communication with traditional telecommunication 

fibers (Physics World, 2012, para. 7). 

The time it takes to break an encryption algorithm, or cipher is an important component 

of the strength of the algorithm. Sipser defines this state as a probabilistic TM, where 𝑝(𝑇𝑀) is a 

one-way permutation in polynomial time. Quantum computers operate in exponential time, but 

with 𝑝(𝑇𝑀) the probability that a variable (𝑤) does not equal (𝑛) is a function of the probability 

that the TM is in state(𝑛−𝑘 = 𝑛/𝑘), where (𝑛) is any random number (1997, pp. 375,377). Prime 

numbers and randomness are both intertwining and critical to functional cryptographic defense 

against quantum cracking. Cracking encryption was the birth of the modern computer. 

 The story of Alan Turing is well known in cryptography, used to discuss the impact 

“cracking” cryptography can have by using the German commanding of their U-boats during 

World War II as a case study (Sipser, 1997, p. 372). “Alice and Bob,” fictional characters, can 

communicate securely using quantum communication which Jim Alves-Foss, director of Center 

for Secure and Dependable Systems discusses (n.d., p. 2.1). Alves-Foss explains how quantum 

communication works by addressing the methods of extracting the message from signals without 

noise (n.d., p. 2.1). The signal returns random values to anyone who reads the signal incorrectly 

(Alves-Foss, n.d., p. 2.1). Essentially, any tampering is easily discoverable by Alice and Bob 

(Alves-Foss, n.d., p. 2.1). The principle of quantum mechanics, known as entanglement, 
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guarantees that Alice can tell Bob the key values irrespective of any time component (Alves-

Foss, n.d., p. 2.2). 

While quantum computing poses a risk, the additional research from 2013 by Daniel 

Genkin, Adi Shamir and Eran Tromer working out of Tel Aviv in Israel, whom now work for the 

Technical Institute of Israel illustrates the conventional threat posed against the RSA encryption 

algorithms. Their work uses acoustic noises, or radio signals, from various laptop models to 

crack an RSA algorithm and extract actionable data should they have chosen any attack they 

simulated (2013, p. 5). They used parabolic microphones, which is a curved sensor and then 

reflected the sensor from the same curve to allow a longer distance of an attack vector (Genkin, 

Shamir, & Tromer, 2013, p. 5). While they admit it only takes an hour for this attack scenario, 

the contrast of how long a quantum computer would take is of significantly less time. 

Quantum Satisfiability 

Schrodinger created the first method to solving eigenvalue problems using differential 

expressions (Anderson, 2002, p. 3). Heisenberg created the other, using operators relying on 

algebraic methods and matrices (Anderson, 2002, p. 3). Edwin Taylor has received awards for 

his contributions in teaching physics as well as teaching at the Massachusetts Institute of 

Technology, and co-authored a text on physics with A.P. French (who worked on the Manhattan 

Project during World War II). They treat a particle traversing a plane in accordance with the 

perpendicular relationship that results.  

If a particle with angular momentum traverses a plane classically, then it points 

perpendicular to the plane (French & Taylor, 1978, p. 460). This then means that the angular 

momentum lies along the z-axis, classically speaking (French & Taylor, 1978, p. 460). To draw 

an analogy to this in quantum mechanics, the particle described by a 2-D wave function 𝜓(𝑥, 𝑦) 
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is the resulting Eigen-function of a specific operation. If (𝑞) is a prime or a power of a prime, the 

elements (0,1, … , 𝑞 − 1) create a finite field under addition and multiplication where 

𝑆 = [
𝑞𝑛

∑ (𝑖)̂(𝑞−1)𝑒
𝑖=0

]          (12) 

 If Equation 12 holds true, and (𝑞) is prime, any Abelian group of q-ary sequences is 

considered a vector space over the field 𝑚𝑜𝑑(𝑞), therefore only the group structure is needed 

when (𝑞 = 2) (Ash, 1990, p. 96). The following conditions are required for Abelian groups of 

which the direct sum is a cyclic group, also of which the sub-groups are pure and a principal 

ideal ring. Equations 13-16 refine the conditions for an Abelian group. Principal ideal rings are 

commutative, possess abnormal division of properties, and factor uniquely into prime elements. 

(
𝐺

𝐻
) , 𝑤ℎ𝑒𝑟𝑒 (𝑦𝑖𝑚𝑜𝑑(𝐻))          (13) 

(𝐺 = (𝐻⨁𝐾))           (14) 

[[(𝑡∗) = ∑𝑎𝑖𝑦𝑖] ↑ [[𝑍 − ∑𝑎𝑖𝑥𝑖]⨁[0 ∈
𝐺

𝐻
]]]        (15)  

[∑ 𝑎𝑖𝑥𝑖 ∈𝐾]           (16) 

 Let (𝐾) be a sub-group of (𝐺) generated by(𝑥𝑖), then the resulting summation becomes 

an element of set (𝐾) such that set (𝑍) is an element of the addition of sets (𝐻) and(𝐾). 

Equation 17 is the concluding space as an element of the resulting group. This is a membership 

of the sum between the sub-group and divisor of the parent group. 

∴ [𝑍 ∈ (𝐻 + 𝐾)]           (17) 

 At the point where set (𝐻) intersects set (𝐾) at the zero of the functions, there is a set 

(𝑊) that is equal to Equation 15 and (𝑊) is an element of set(𝐻). Given these resulting 

conditions, the point(𝑦
𝑖
) when equal to infinity then approaches (𝑎𝑖) at its zero value. This only 

occurs if (𝑦
𝑖
) does not equal infinity, and requires some (𝑛𝑖) not equal to infinity. The final 
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conditions for a pure sub-group within these boundaries is that (𝑎𝑖) is a multiple of(𝑛𝑖), and also 

that (𝑡) is a multiple of (𝑛𝑖). With these satisfied requirements, the subgroup calculated is then 

pure. 

 Principle rings as a rule have only one prime element. The use of primes within cyber 

security serve a function in key systems for cryptography, and within the purview of quantum 

mechanics and information theory, primes remain essential to cryptography also. With a ring of 

p-adic primes, expressed as(𝑅𝑝∗), the ring must contain some variable, which is in relation to the 

single prime element shown by Equation 18.  

(𝑎0 + 𝑎1𝑝…𝑎𝑛𝑝𝑛
𝑛)           (18) 

 The satisfiability of any algebra, (𝐴), of two languages (𝐿) and (𝐿′) when (𝐿) is a proper 

sub-group of (𝐿′) means that some interpretation of the languages, (𝐼) is an interpretation of (𝐿) 

on set {𝑆}. The interpretation (𝐼′) of (𝐿′) on set {𝑆′} such that each interpretation and its 

respective language are in a proportional relationship to one another as a proper sub-group to the 

set. Equation 19 is the mathematics of the proportions of sets that are in union with the languages 

and interpretations: 

[(𝐼′ ⋈ 𝐿′) ⊆ {𝑆}′] ≡ [{𝑆} ∪ (𝐼 ⋈ 𝐿)]        (19) 

 Furthermore, with each interpretation and related language, there are functions specific to 

each set where each function is an element and unique to each language. These components to 

the language allow for the designation of another set, (𝐴) wherein this new set and the 

interpretation, (𝐼) result in a multiplicative union of set (𝐼′) with both languages as well as {𝑆} 

(see Equation 20). 

[(𝐴 = (𝐴, 𝐼) → (𝐼′⊗ (𝑆, 𝐿, 𝐿′)]         (20) 
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 The final requirement to prove satisfiability of a logical and mathematical system for 

engineering algorithms is that some (𝐹) must be computable starting at the value(𝐴𝑛). With the 

foundation of decidability and the structure of the group established, it is necessary to explain the 

purposes of these calculations under the purview of isomorphic groups. The simplest and most 

basic of any algebraic system is a group, so described by mathematician Charles Pinter who 

earned the prestigious State Doctorate at the University of Paris. In geometry isomorphism has 

several types, with the simplest in turn being similarity and congruence (Pinter, 1990, p. 90). 

Two geometric figures are congruent if there is a plane motion where the motion makes one 

figure coincide with the other (Pinter, 1990, p. 90). 

 The figures are similar if a transformation of fixed proportion affects the length in a given 

ratio (Pinter, 1990, p. 90). If (𝐺) is a group and(𝑎 ∈ 𝐺), it is feasible to say every element of (𝐺) 

is a power of(𝑎). Therefore all elements of (𝐺) are a power of (𝑎) and nothing else (Pinter, 

1990, p. 93). Pinter demonstrates the conditions for a generator element of some set, which 

produces a cyclic group. The group itself contains only elements of which are powers of the 

cyclic generator shown in Equation 21. 

[𝐺 = {�̂�: (𝑛 ∈ 𝑍)}]           (21) 

 The proper expression of generator elements of a cyclic group is Equation 22. 

(𝐺 = 〈𝑎〉)            (22) 

 If there is some group,(𝐻) that is homomorphic with(𝐺), then a function(𝑓), transforms 

(𝐺) into (𝐻) (Pinter, 1990, p. 137). When a vector, (𝑥 ≠ 0) is an eigenvector of(𝐴), if (𝐴) 

carries (𝑥) into a collinear vector, the value lambda(𝜆), is the eigenvalue of operator(𝐴), 

corresponding to the eigenvector (𝑥) writes expert Georgi Shilov, who conducted pioneering 

work in generalized functions and functional analysis (Linear Algebra, 1977, p. 108). A vector 
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space over a defined field is a set with addition and multiplication defined (Pinter, 1990, p. 283). 

This is vector addition and scalar multiplication (Pinter, 1990, p. 283).  

 Hilbert space. The necessity of establishing definitions of (ℌ) as a Hilbert space is 

critical to completing the formalization of the groundwork necessary to engineer a quantum 

computing system (Shilov, 1974, Elementary Functional Analysis). Shilov provides the 

following requirements to satisfy conditions of a Hilbert space as accepted in mathematics and 

computer science (see Equations 23-26) (Elementary Functional Analysis, 1974). (ℌ), said to be 

a Hilbert space, if for every pair of vectors a defined real number or scalar product satisfies four 

axioms expressed as Equations 23-26. 

(𝑥, 𝑦) > 0 if 𝑥 ≠ 0          (23) 

(𝑥, 𝑦) = (𝑥, 𝑦) for all (𝑥, 𝑦)in the Hilbert space       (24) 

(𝛼𝑥, 𝑦) = (𝑥, 𝑦) for all (𝑥, 𝑦)in the Hilbert space       (25) 

∀(𝑥, 𝑦, 𝑧)[(𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧)]        (26) 

  A complex system or any system with imaginary components involved is a complex 

linear (ℌ) if all vector pairs are a scalar product of the conjunction of vector pairs that satisfy 

Equations 23-26 (Shilov, Elementary Functional Analysis, 1974, p. 63). 

 The relation between imaginary numbers to physical values is difficult to address well. 

Henry E. Kyburg Jr. offers a solid structure such as this from which an extrapolation for 

engineering a QTM can be based upon. Kyburg, drawing from his expertise in both philosophy 

(having received the Butler Medal for Philosophy), and his strong knowledge of scientific 

principles structures bases of a dynamic system involving boundary conditions. The boundary 

conditions of his formal logic descriptions of physical sciences, and the change it undergoes, is a 

system of both probability and actuality (Kyburg Jr., 1968, p. 222). 
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The increase in internal energy or the heat input to a system and the work performed by 

the system create the foundation of any classical mechanics (Kyburg Jr., 1968, p. 239). As 

explained by Kyburg, for any system the definition of the change in entropy expresses the 

change in transition from one state to another (1968, p. 241). The second law of thermodynamics 

has probabilistic character, according to Kyburg’s understanding, stating entropy always 

increases, and proceeds in directions of increasing probabilities (Kyburg Jr., 1968, p. 241). 

 The need for a Hilbert space comes from the need for a Hilbert system to establish valid 

Turing machines, explains Mordechai Ben-Ari, a recipient of the 2004 ACM SIGCSE Award for 

his contributions in explaining computation and mathematical logic. Hilbert systems are 

deductive for single formulas (Ben-Ari, 2001, p. 48). (ℌ), a deductive system with a tri-

axiomatic scheme, has one rule of inference (Ben-Ari, 2001, p. 48). To verify the existence of a 

vector space over a real field, the following Equations 27-29 must hold according to Ben-Ari. 

These are the rules of inference. 

⊢ (𝐴 → (𝐵 → 𝐴))          (27) 

⊢ ((𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)))      (28) 

⊢ ((¬𝐵 → ¬𝐴) → (𝐴 → 𝐵))         (29) 

 To verify the existence of a vector space over a real field, the following holds. Where 

each positive integer,(𝑘) for (𝑅𝑘) when(𝑅𝑘) is the set of all ordered k-tuples, values of some (𝑥) 

are real numbers and coordinates of a set(𝑋) and the elements of (𝑅𝑘) are vectors. A vector 

space (𝑅𝑘) can then exist over a real field. 

 A function of two real variables is said to be harmonic on a domain if the second partial 

derivatives exist and are continuous within that domain. Every point of that domain must satisfy 

the respective partial derivative as a zero of Laplace’s equation. The Bochner-Weil theorem 
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states a continuous function on the same domain is positive definite only if there is a variable, 

which has a value on that domain, where Equation 30 is satisfiable. 

𝑝(𝑥) = ∫ 〈𝑥, 𝑥′〉𝑑〈𝑥′〉 ← (∀𝑥: 𝑥 ∈ 𝐺)
𝐺

𝐺′
       (30) 

 With respect to Equation 30 (see page 18), (𝐺) represents the domain as discussed to 

satisfy the positive definite identity required. The boundary conditions of the now complete 

formulization unify with the principle of synchronous, concurrent algorithms (SCA) as 

engineered by B. Thompson, J. Tucker, and J. Zucker, who are experts in mathematics, 

computation, and complexity theory. An SCA as created by the researchers working with 

Thompson describe it as a process based on modules within networks and channels, which 

compute and communicate data in parallel, synchronized by a global clock with discrete time 

(2009, p. 1386). SCA are useful given the applications it has to analyze and develop coupled-

map lattices, based upon discrete time, with some discrete and continuous space (Thompson, et 

al., 2009, p. 1386). 

Fields, physics, and light. The Lorentz transformation is of great significance to the 

conceptualization of any QTM. The Lorentz transformations listed (Equations 31-34) have far-

reaching applicability: 

𝑥′ = (
𝑥−𝑣𝑡

√1−
𝑣2

𝑐2

)            (31) 

𝑦′ = 𝑦            (32) 

𝑧′ = 𝑧             (33) 

𝑡′ = (
𝑡−

𝑣2

𝑐2
∗𝑥

√1−
𝑣2

𝑐2

)            (34) 
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 When the transmission of a particle of light travels along the positive x-axis, the light-

stimulus adheres to Equation 35 according to the world-renowned physicist Albert Einstein 

(1961, p. 38): 

(𝑥 = 𝑐𝑡)           (35) 

 The foundation of particles and fields are vectors of (𝑥) according to their respective 

norms, which result in groups. Asim Orhan Barut, a former professor at Syracuse University and 

former co-director of the Institute for Theoretical Physics explains the relationship between 

electrodynamics and fields as a function between Lorentz transformations and relativistic 

quantum theories. Barut formulizes these relationships into categories within group theory, such 

that Equations 36-38 hold true (1980, p. 8). 

𝑥2 > 0            (36) 

𝑥2 = 0            (37) 

𝑥2 < 0            (38) 

 With respect to system behavior, Equation 36 describes time-like vectors, Equation 37 

represents light-like or null vectors, and finally space-like vectors are within Equation 38. 

Complex Lorentz spaces have direct applications to relativistic quantum theories, according to 

Barut (1980, p. 11). By adding imaginary four-vector (𝑖𝑦)to every real four-vector, (𝑥) the 

following derivation may be calculated as Equation 39. 

(𝜉 = 𝑥 − 𝑖𝑦)            (39) 

 Two generalizations of Lorentz space are an ordinary complex vector space with real but 

non-positive norms having a scalar product. Equations 40-43 solidify the application of Lorentz 

transformations using the principles of Equations 36-39 to produce the eigenfunction as 

Equations 40-43 (see page 21). 
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𝜉𝑛 = 𝜉𝑛̅̅ ̅            (40) 

[(𝜉(𝛼𝑛 + 𝛽𝑛2)) = (�̅�𝜉𝑛1 + �̅�𝑛2𝜉)]         (41) 

[((𝛼𝜉1 + 𝛽𝜉2)𝑛) = (𝛼𝜉1𝑛 + 𝛽𝜉2𝑛)]        (42) 

[𝜉2 = 𝑥2 + 𝑦2]           (43) 

 Wave mechanics are the core to any quantum mechanics system given the duality of 

light, which take on forms of both particles and waves. A center-of-mass momentum has the 

general form of Equations 44 and 45. 

(𝐸1, +𝑃1)            (44) 

(𝐸2, −𝑃2)            (45) 

 The limit of motion for the relativistic particles is a derivative of the wave function such 

that the derivative and wave are at the zero-value of the expression as Equation 46. 

𝜌�̈� − 𝑌 (
𝜕2𝜓

𝜕𝑥2
) = 0           (46) 

 The dot notation above the wave function, (𝜓)̈  symbolizes the second derivative with 

respect to time. The wave function follows the propagation mechanic of Equation 46, where (𝑣) 

is the constant velocity and (𝜌) has a physical correlation to mass per unit length. Therefore, 

Equation 47 is the vector relative to velocity, and (𝑌) is Young’s modulus. 

𝑣 = (
√𝑌

𝜌
)            (47) 

 Where the amplitude of the wave function is (𝜓(𝑥, 𝑦)). This specific function coincides 

with the Euler-Lagrange Equations. Most importantly, the dynamics of the field as an action 

principle is Equation 48. 

𝛿 ∫ ℒ𝑑3𝑥𝑑𝑡 = 0           (48) 
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Methodology 

The first step to develop security relative to quantum information was to demonstrate 

relationships between quantum systems and classical computers. Using findings from quantum 

computing research along with previously developed systems of quantum logic reverse 

engineering was necessary. The methodology involved using expert system pseudo-code with 

modification to develop new algorithms called QUINE. Lastly, elements of quantum logic phase 

shifts were the basis of construction for a virtual quantum circuit built with QuIDE. The elements 

of phase shifts as implemented were inverse transition shifts, as well as the principle of 

entanglement and coherence. The initial stages of this research were engineering the 

mathematical foundation for implementation of algorithms in accordance with Equations 18-20 

(see page 15) which are formulizations for a computationally satisfiable system. 

The software for modeling the quantum circuit is open-source and free to use, and the 

result of graduate work by Joanna Patrzyk and Bartlomiej Patrzyk for their MSc. degrees. This 

work from the CGW Conference in 2014, “QuIDE” is on the official website at 

“http://www.quide.eu/.” SWI-Prolog is a robust development environment for several languages. 

The official website for downloading SWI-Prolog is at www.swi-prolog.org. 

Software Environments 

 A Windows 32-bit operating system running on a desktop computer served as the 

environment for the research. The QuIDE quantum computer interface allowed change to the 

source code such that a user is able to embed C# scripts or functions to the virtual environment. 

By adjusting the Wolfram Mathematica functions into MatLab syntax and saving the MatLab 

code, it was not possible to import them into the QuIDE environment given the incompatible 

version of Mathematica used. Since consumers choose the Windows 32 bit OS environment 

http://www.swi-prolog.org./
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given the widespread use cases this is the reason for applying it to the research. Thus, while the 

calculations may not be repeatable by any reader, the ability to cut and paste the code both 

written for this research as well as the C# script of QuIDE is able to be implemented by a wider 

range of readers. Furthermore, the private sector makes wide use of Windows OS based servers, 

and the NCIS of the United States operates using Windows OS environments, thus use-cases of 

QUINE are more applicable to these forms of networks (Malloy, 2015). 

The modeling of equations that are results from the methodology were graphed using 

Wolfram Mathematica version 8, Student Edition. Mathematica allows each graph to progress 

over time. SWI-Prolog is a programming language known for the applications it has for building 

artificial intelligence, and is the Edinburgh standard of the Prolog language family. The version 

of SWI-Prolog used is 7.3.9. Buffers written in prolog are executable using the Windows 

terminal by running a prolog shell from the buffer, typing “cmd.exe” within the shell and starting 

the shell, and finally saving the buffer while the shell is running using the “.bat” file extension. 

Mathematica is a product of the Wolfram Research company founded by Stephen Wolfram in 

1987 (Wolfram Technology, 2015, p. About Wolfram Research). The company goal of Wolfram 

is to develop technology tools so computation is more powerful with each product release 

(Wolfram Technology, 2015, p. About Wolfram Research). The primary use of Mathematica was 

to generate the graphs of equations to aid in explanations of functions. In addition, the graphs 

generated by Mathematica show the behavior of the equations. 

Transcendental Complex Identities 

Friedrich Gauss was a brilliant mathematician who worked to calculate the occurrence of 

twin-prime numbers, where twin primes are two, consecutive odd numbers where the division of 

each results in both itself and the number one. Daniel Shanks whose work is available from the 
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American Mathematical Society explored the relationship of the variable (𝑚) such that the 

algorithm (𝑚2 + 1) is a prime number (1959). The equations specifically engineered for the 

purpose of this research demonstrate the potential for use of radio wave mechanics to mitigate 

quantum computer threats. Equation 53 (see page 25) derives from calculations modifying 

Gauss’ approximation to prime numbers (see Equation 49). Refining the Gaussian approximation 

utilizes analytic geometry and mathematical logic. The Gaussian approximation tends towards 

prime numbers over the interval specified in Equation 49. 

{∫
𝑑𝑥

log(𝑥)
≅ 𝜋(𝑛)

𝑛

0
}          (49) 

 By using the Gaussian approximation in conjunction with analytic geometry, an 

algorithm to approximate trigonometric relationships to twin-primes exists. The result is 

calculable by framing the problem as a distance function between each prime number 

occurrence, such that Equation 49 by a distance function(𝑓(𝑑)) equates to a new value of 

[𝑇(𝜋(𝑛))]. From this, Equation 50 results from a conditional after applying the function to 

Equation 49 (see Equations 50.4-50.8, page 25). 

{∫ (
𝑑𝑇(𝑥)

log(𝑥)
)𝑑𝑥}           (50) 

 A definition using equivalence of the distance function to the set {2,2,4} is from a 

modified number line, which converts the number line into a lattice of three tiers. By establishing 

a further equivalence between the set {1,3,5} to[𝑇(𝜋(𝑛))], though the number (1) is not prime, 

the distance function is equal to this equivalence. The following Equations 50.1-50.3 show how 

the algorithm computes the values necessary. 

[1 + 𝑓(2) = 3]          (50.1) 

[3 + 𝑓(2) = 5]          (50.2) 
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[1 + 𝑓(4) = 5]          (50.3) 

 The ordered relationship that may exist works as an assumption to use the anti-derivative 

of a rule to show that Equation 50 (see page 24) is equal to Equation 53. If a prime number is 

equidistant from two primes then the integral of a triplet prime may be the area of an acute 

triangle using the distance function as a calculation for the sides of the triangle. The solution set 

of the distance function is the twin prime, plus or minus a distance of two, synonymous to a 

prime number within the finite field specified. 

The sum of the distance between a triplet prime and the final distance solution of the set 

is four. The sum of the distance between the first and last prime in a triplet prime are equivalent 

within the lattice set for numbers. By expanding the number line into a lattice structure, the base 

becomes the distance between the first and last prime number. The following premises illustrate 

this (see Equation 50.4-50.8). 

[𝜋(𝑛)3 − 𝜋(𝑛)1 = 𝑑(4)]         (50.4) 

[⊿𝐴 = (
1

2(4(2𝑠𝑖𝑛𝜃))
)]          (50.5) 

[⊿𝑇 = (4𝑠𝑖𝑛𝜃)]          (50.6) 

{[𝑇(𝜋𝑛) → [𝜋(𝑛) ↑ 𝑓(𝑑)]] = 4(𝑠𝑖𝑛𝜃)}       (50.7) 

∫ (
𝜋𝑛

𝜋𝑛

𝑑𝑥

log(𝑥)
± 2) = (0.5𝑓(𝑑(𝑠𝑖𝑛𝜃)))         (50.8) 

From these premises, the following result occurs as Equation 51. Equation 51 and 

Equation 52 are equal, and simplifies to Equation 53 in complex form. 

{ lim
𝑛±∞

𝑛 ∫ [𝑓𝑛 − 𝑓𝑑𝑃𝑛]
∞

−∞
}         (51) 

∫
𝑑𝑥

log(𝑥)

𝜋𝑛

𝜋𝑛
+ 𝑓{2,2,4} = [

1

2
(4(2𝑠𝑖𝑛𝜃))]       (52) 

{𝑖𝑒−𝑖𝜃 − 𝑖𝑒𝑖𝜃}            (53) 
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 The trapdoor function of the cipher is the result of a function applied to Equation 53 (see 

page 25) and an integration of entropy. The Pochman expression of Equation 53 (see Equation 

53.1) produces a unique analytic function (𝜑) (see Equation 53.2, page 27). Figure 1 displays the 

graph for Equation 53, demonstrating the sine wave with intersections(𝜋). The application of 

Figure 1 to the system as is engineered allows for use of twin-prime functions along an arc 

cipher. 

 
Figure 1. (𝟐𝝅) Period - Function as Viewed in Wolfram Mathematica. 

The value of periodicity of the identity shown in Figure 1 from Equation 53 is periodic in 

(𝜃) with period(2𝜋). Upon the Pochman expression by virtue of the unique analytic function, 

when {ℝ ⊆ ℤ} and 𝑓(𝑧) is equal to (2𝜃2) it is calculable from Equation 53. The existence of a 

single complex analytic function is demonstrable and shown (see Appendix B, page 5). 

Equation 53.1 is the Pochman expression of the foundational transcendental identity 

resulting from modifications to the Gaussian prime approximation. The Pochman expression 

serves to calculate the existence of the unique analytic function expressed as Equation 53.2 (see 

page 27). This unique analytic function is critical to proving the removability of the singularity 

for the trapdoor cipher. 

[4𝜃 ∑
(−1)𝐾((2𝐾𝜋+𝑥)((

𝑥

𝜋
)
𝐾

3
)

(𝐾!)3
∞
𝐾=0 ]        (53.1) 

 Equation 53.2 is the unique analytic function of which the ceiling value is a Riemannian 

Manifold. This serves as both an arc function for cryptography as well as the point of radial 
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propagation for the necessary wave functions. Equation 53.2 as the unique analytic function 

solves for the removable singularity in this system. 

[4𝜃 ∑
(−1)𝐾((2𝐾𝜋+𝑧)((

𝑧

𝜋
)
𝐾

3
)

(𝐾!)3
∞
𝐾=0 ] = (𝜑)       (53.2) 

 Equation 54 satisfies conditions for a p-adic vector space and is Figure 2. The 

combination of using an Abelian-Banach space with (ℌ) is that by definition these are 

topological vector spaces, where a vector space is a combination of vectors, satisfying the 

requirements for Hilbert space. Equation 54 produces Figure 2, which is the initial surface 

condition of the system cipher and contains entropy in the form of unpredictability. 

{2𝑖𝜃𝑒−𝑖𝑥 − 2𝑖𝜃𝑒𝑖𝑥}          (54) 

 
Figure 2. (𝜽) Entropy - Function as Viewed in Wolfram Mathematica 

Figure 2 as shown and graphed using Mathematica software using Equation 54 

demonstrates entropy in the form of inconsistency of transformations. This serves, with the 

periodicity of (𝜋) to approximate the location of prime numbers for cryptographic purposes. 

Equation 57 results from a set of parent functions using Equations 55 and 56 along with a 

variable of (𝜋𝑛) which relies upon a domain of {ℝ ⊆ ℤ} when{(𝜃 = 0), (𝑥 = 𝜋𝑛), (𝑛 ∈ ℤ)}. By 

applying the function shown in Equation 55, and expanding it into Equation 56, Equation 57 

results. Equation 56 once evaluated is undefined where(𝜋𝑛), the number of primes, is less 

than(𝑛) (see Equation 57, page 28). As required for any principle ideal ring, to satisfy this, 
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Equations 55-57 are applicable to create an ideal ring of which contains an arc for trapdoor 

functions in the cipher. 

𝑓: {
𝑖𝑒−𝑖𝜃 − 𝑖𝑒𝑖𝜃

𝜋𝑛
2𝑖𝜃𝑒−𝑖𝑥 − 2𝑖𝜃𝑒𝑖𝑥

          (55) 

𝑓: {
1 − 1
2𝜋

2𝑖𝜃𝑒−𝑖5 − 2𝑖𝜃𝑒𝑖5
}
𝑓
→{

0
2𝜋

((2𝑒)−5𝑖((𝑖𝜃)−5𝑖) − ((2𝑒)−5𝑖((𝑖𝜃)5𝑖))
}    (56) 

{0−𝑖𝜋𝑛 − 0𝑖𝜋𝑛}          (57) 

By the first set of twin primes {2,5}and adjusting Equation 54 (see page 27), the function 

of Equation 55 accordingly by placing Equation 57 as a member of the function set as(1 − 1), 

the resulting function is then Equation 58 (see page 37). The algorithmic identity to manipulate 

the convergence of the complex conjugates and their transposition upon the intersection of a 

point in the vector space may control the coherence between ultraviolet radiation and radio 

waves. 

Ultraviolet light, explained by the website run by the Nobel Prize committee, explains 

how computer chips can use the destructive radiation of ultraviolet light in the construction of 

computer chips. The Nobel Prize organization site reports, “The silicon wafer is moved in steps 

under the mask and the UV-light to expose the wafer. In this way, chip after chip can be made 

using the same mask each time” (Nobel Prize Organization, “Chip Production Today – In Short” 

2003). This suggests the use of ultraviolet radiation to affect the transference of identity based 

upon discrete functional mapping onto a collinear space for computer electronics. 

The support this suggests for the ability of a real-quantity to produce a complex effect 

from the generation of a bound wave show a capability for the real value to affect the complex 

conjugate within this system using vector transformation. By the very nature of quantum 
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mechanics, quantum physics uses degrees of probability. The number (𝑖𝑒𝑖) is a transcendental 

number where the polar coordinates are (𝑟 = 1) and (𝜃), the value of polar coordinate degrees. 

This complex number is a vector in(ℌ). The use of (𝜃), with it serving as the radial center of a 

pole has potential application to radio antennae using a parametric structure as done in hacking 

RSA GNuPG keys (Genkin, Shamir, & Tromer, 2013). As conjugate values of(𝜆), the 

intersection would be between radio waves and ultraviolet light. 

Cyber Security Expert System 

The SWI-Prolog documentation, accessible online, describes the interactive development 

environment by saying “SWI-Prolog is widely considered to be a robust and scalable 

implementation of the Prolog language. It is widely used in education and research. In addition, 

it is in use for “’24 × 7’ mission critical commercial server processes” (SWI-Prolog, 2015). The 

sets of code for use in this research use artificial intelligence, but development for this research 

in both cases of the scripts are incomplete. The scripts making use of the knowledge bases and 

inference engine functions operate according to Ivan Bratko’s research, who directed an institute 

focusing on artificial intelligence (2013, p. 387). The code also uses foundations of Bratko’s 

“best first search” script (2013, pp. 264-268). The knowledge base focuses on ports specific to 

limited network protocols for the purposes of this proof of concept. 

fact:device(input). 

fact:device(udp). 

fact:device(syn). 

fact:device(ipa). 

fact:device(port). 

fact:(connected(input,port)):- 
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fact:(connected(port(2),computer2)). 

fact:(connected(port(3),computer)):- 

fact:(connected(port(4),computer)). 

parse:connected(syn,udp,ipa):-parse:connected(syn,udp,syn),input(syn,udp,ipa). 

parse:device(syn,udp,ipa). 

parse:device(defines,classification,port). 

parse:(output(classification(syn|X,udp|Y,ipa|Z))):-input(unknown(X,Y,Z)). 

The purpose of this script is a demonstration of a knowledge base that utilizes an 

inference engine, which is a form of artificial intelligence. To implement this script in the 

deployed program for this research requires correctly calling the rules. The gathered arguments 

for the port scanning which uses the best first search is a recommendation for use. The best first 

search script has a modification to enable network monitoring upon completion, and therefore 

incorporates predicates for port scanning. The principle behind the best first search is that the 

search algorithms do not act traditionally but instead use approximations for the solution to allow 

faster calculations based on probability for the goodness of fit values (Bratko, 2013, p. 268). 

bagof(syn/ipa). 

goal(_):-goal(n). 

bestf(Vuln,Solution):- 

 expand(Vuln,l(Vuln,0/0),9999,_,yes,Solution). 

bestf([T|_],F):- 

 f(T,F). 

bestf([],9999). 

expand(P,l(N,_),_,_,yes,[N|P]):-goal(N). 
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expand(P,Tree,Bound,Tree1,Solved,Solution):-port(P),port(Tree|Bound|Tree1;Solved|Solution). 

expand(P,l(N,_),_,_,yes,[N|P]):-goal(N). 

expand(P,l(N,F/G),Bound,Tree1,Solved,Sol):- 

 F=<Bound,(bagof(M/C),(s(N,M,C) , 

         port(Member|Vuln),(~(Member|Vuln)-> 

[M,P],Succ)),!,succlist(G,Succ,Ts),bestf(Ts,Fl), 

    expand(P,t(N,Fl/G,Ts),Bound,Tree1,Solved,Sol);Solved=0). 

expand(P,t(N,F/G,[T|Ts]),Bound,Tree1,Solved,Sol):- 

 F=<Bound,bestf(Ts,BF),input(Bound,BF,Bound1), 

 expand([N|P],T,Bound1,Tl,Solved1,Sol),continue(P,t(N,F/G,[Tl|Ts]),Bound,Tree1,Solve

d1,Solved,Sol). 

expand(_,t(_,_,[]),_,_,never,_):-!. 

expand(_,Tree,Bound,Tree,no,_):-f(Tree,F),F>Bound. 

 The rules of the system are the overarching knowledge structure for the algorithmic 

implementation of this research, which is progress towards programming an expert system for 

cyber security (Bratko, 2013, p. 347). An expert system must possess knowledge of some form, 

but also be able to use rules to explain the programmatic behavior to an end user (Bratko, 2013, 

p. 348). The rule base for the algorithms created operates with a use of dynamic data exchange 

for Windows operating systems, which allows for communication between applications 

(Microsoft Corporation, 2015). The dynamic data exchange (DDE) feature within these 

computations, in combination to the rules shown using best first search actively seeks 

vulnerabilities through port scans and communication protocols. 

[trace] 4 ?- '$dde_request'(X,Y,Z,A). 
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X = syn, Y = port(_G2919), Z = ipa(_G2919), A = udp 

 The principle factor of the algorithms hinge upon the ability to monitor network 

communication based upon port access and network protocols. This comes from the use of 

“port” as a predication of several variables. 

port(_) :- 

 strip_module(port((Module)--> Plain),Module,Plain), 

 Plain =.. [Vuln|Args], 

 gather_args(Args, Values), 

 Goal =.. [Vuln|Values], 

 Module:Goal, 

 port(port->close). 

port(close):-(rl_write_history(port)). 

port(classification(on_signal(Vuln|Scan,Vuln|Open,Open))):-(parse:output(Scan)). 

port(retractall(Vuln)):-port(Vuln). 

port(retractall(parse:parse(Vuln))):-port(Vuln). 

port(Open|Scan):-('$dde_execute'((port(_)),Scan,Open)). 

((port(Access;Open)):-('$dde_request'(((Access)),write([vulnerabilities]),(Open),(port(_))))). 

(((port(IP)) :- 

 dde_current_connection((Scan|Vuln),Scan, Vuln),IP)). 

port((_,_)):-'$dde_disconnect'((_,_,_,_)). 

 Once a current connection opens, further scanning occurs while the port becomes active 

once again. When a vulnerability registers, further threat analysis occurs. A list of vulnerabilities 

develops for human analysis and further response. Either the process repeats or the DDE 
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connection can end by user choice. The trapdoor feature of this defense system relies on prime 

numbers and the DDE capability. For quantum computers, the ability to determine the prime 

numbers of a factored value renders conventional cryptography pointless. To circumvent this, or 

attempt to, an infinite recursion based on prime numbers is within the program. 

matrix(node(A,B,C),edge([_]),bestf([],9999)):-matrix((node(A,B,C;d(_))),port(A),input(A)). 

matrix(Line,Node,Distance):-edge(Line|Node+Distance). 

matrix(A|Node_x;(B|Node1,(C|Node3)):-edge(A|Node1),edge(B|Node3), edge(C|Node_x)). 

node(d([prime+1=prime])). 

node(d([prime+2=prime])). 

node(d([prime+1=prime])). 

edge(X,Y):-(matrix(lattice,([])|X,Y)). 

edge([Node1,Node2];[(C;Node3)],[_]):-matrix(Node1|_,Node2|C,Node3). 

edge([A,B];[B,C];[C,B]):-node(3),edge([A,B,C]),distance((node + edge 

=Distance)),matrix(edge,node,Distance). 

 The principle behind the infinitely recursive prime lattice structure is a distance function 

between prime number locations on a natural number line, but upon a modified number line. The 

traditional natural number line is a single line where each natural number has an equidistant 

position, but the lattice matrix of natural numbers developed for this research is in place of that. 

Virtual Quantum Circuits 

The phase shifts for building this quantum circuit are several inversion functions. The 

inverse Quantum Fourier Transform (QFT) is upon (𝑥) during|0⟩, while an inversion carry 

function is at |1⟩ upon(𝑥) leading to transfer of spin through the vector space. Simultaneously an 

inversion reverse function within |1⟩ upon (𝑦)is in place. Finally, a swap inversion function is at 
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|1⟩ upon (𝑧) while a control gate during |0⟩ upon (𝑧) results in final superposition. Figure 3 

displays the initial conditions and state space of the quantum circuit. 

 
Figure 3. Quantum Circuit - Circuit as Viewed in the QuIDE Environment. 

 

Figure 3 depicts the initial qubits in the QuIDE after adding the described inversion gates 

and measurements. The result after adding these specific gates was intended to create a chain 

effect of transferring states such that a model of communication results which rely on 

entanglement and coherence. Figure 4 is the ordered result of Figure 3 after selecting the “build 

circuit” option in QuIDE. This demonstrates the fidelity of gates selected to operate as a quantum 

circuit. 

 
Figure 4. Phase Shifts – Circuit as Viewed in the QuIDE Environment. 

From the configuration shown in Figure 3 as built, Figure 4 shows how the QuIDE 

program sorts the gates along with the measurement options once the circuit compiles. The 

following code populates when selecting the “build circuit” option. The rotations shown in the 
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“x.RotateX” pieces of the code are rotations upon the x-axis with a degree of (𝜋) values. The 

measurement functions are relative to the inverse phase shifts and occur both before the shift and 

after. 

using Quantum; 

using Quantum.Operations; 

using System; 

using System.Numerics; 

using System.Collections.Generic; 

namespace QuantumConsole 

{public class QuantumTest 

{public static void Main() 

{ 

QuantumComputer comp = QuantumComputer.GetInstance(); 

Register x = comp.NewRegister(0, 4); 

x.RotateX(3.14159265358979, 0); 

x.RotateX(3.14159265358979, 0); 

x.RotateX(3.14159, 1); 

x.Measure(3); 

x.InverseCPhaseShift(3, 0); 

x.RotateX(1.5707963267949, 1); 

x.RotateX(1.5708, 2); 

x.Measure(3); 

}}} 
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Analysis of Results 

After testing, to understand the standard operations that result from the selected quantum 

gate configuration the initial collapse, where the probability of the qubit value is(1), followed by 

the inversion upon that qubit value, is a function of probability mapping onto another qubit. This 

is proof of fidelity to the research discussions in the previous sections. The results are a 

combination of mathematics, physics, output from the algorithms engineered, and output based 

upon the virtual quantum circuit built for this research. The most impactful result is a 

combination of the capabilities of these computations (see Appendices A and B) along with the 

implications for mitigation against a perceived threat that quantum computers may pose. 

Complex Convergence and Polar Coordinates 

A singularity at the intersection of(𝑦) and(𝜃) between the complex conjugates and real 

components approach values supporting the findings of Turchette and their team’s conclusions of 

quantum computing scalability (Turchette, et. al, 1995, p. 4711). Once the near-value supporting 

Turchette and their team’s findings became discoverable, the results of calculation for this 

algorithm’s functions became applicable for quantum computing implementation in addition to 

classical system defense. While an attempt may be to use classical programmatic defense, given 

the potential for a quantum computer to easily circumvent these conventional cyber security 

measures, additional mitigation is proposed in the form of hardware using the principles of radial 

wave mechanics as the triggered execution of a trapdoor function. The findings from setting the 

identity to (𝑛) when (𝑛) vary between the ranges [−5,… ,5] with the variable at(𝑥 = 5), 

produces Figure 5 and Equation 58 as a generalized formulation of the initial system state. 
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Figure 5. Singularity in (𝜽, 𝒚) - Function as Viewed in Wolfram Mathematica. 

 Figure 5 demonstrates the ability for a complex function to result in a convergent series, 

which supports the findings shown by calculation of Equation 58. 

{(−𝑛−𝑖𝜋𝑛(−1 + 𝑛𝑖𝜋𝑛)(1 + 𝑛𝑖𝜋𝑛)) ∈ (𝜆𝑦 = 𝑓𝑛)}      (58) 

The difference along (𝜃) comparative between the initial entropy of this system and the 

discoverable complex singularity is removable and attenuated for. Analyzing the wavelength of 

the y-axis as graphed in Figure 6 shows a convergence of the real and imaginary components at 

the values of [(−1.45 ∗ 108), (2.0 ∗ 105)] which accordingly has a vector length of 

approximately(−1.45 ∗ 108), a horizontal angle of(179.21°) and vertical angle of (89.21°). The 

value of (𝜃) thus equals(179.21°) as shown by Figure 6. 

 
Figure 6. Complex Intersection – Function as Viewed in Wolfram Mathematica 

 The node at the closure of the wave in Figure 6 has an amplitude equal to a resulting rate 

of coherence from Turchette and fellow researchers in their findings (Turchette, et al., 1995, p. 

4711). Applying the degrees of(𝜃) as a value in the polar coordinates of Figure 7 expressed as 

Equation 59 creates a radial propagation mechanic. 
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Figure 7. Polar Coordinates – Function as Viewed in Wolfram Mathematica 

{𝑖𝑒179.21°(−𝑖) − 𝑖𝑒179.21°𝑖}          (59) 

The number (𝑖𝑒𝑖) is a transcendental number where the polar coordinates are (𝑟 = 1) and 

Equation 60 is the polar coordinate value of (𝜃) in degrees. This complex number is a vector in 

(ℌ). Equation 60 is the value of substitution for(𝜃) in this system and is the center of 

propagation for engineering radial network defense. 

𝜃 = [
180(

𝜋

2
−1)

𝜋
°]          (60) 

The use of Equation 60, serving as the radial center of a pole has potential application to 

radio antennae. When (𝜃) is set at (180°) in the exponential value for degrees, the results are an 

intersection approximate to a zero-value equaling (2.0 ∗ 10−2) and(2.45 ∗ 10−16) as values 

of(𝜆), thus the intersection would be between radio waves and ultraviolet light. The use-case 

under discussion requires the coherence between such waves, which in turn requires the 

satisfiability of removing the singularity at the intersection of(𝜃, 𝑦) upon the y-axis. 

Automated Cyclic Port Forensics 

Figure 8 illustrates how the cycling of port scanning operates from the computations (see 

Appendix A). By equating the variable of “Vuln” for “vulnerable” to the argument or “Args” of 

[_S1], a request to the user in identifying whether the port specified is vulnerable becomes a 
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capability of QUINE. With no human input, the next step in this process is to begin the best first 

search. 

 
Figure 8. QUINE Port Bindings – Output as Viewed in the SWI-Prolog Debugger 

 The ability of the algorithms to isolate useful forensic data along with data relevant to 

network defense is shown by output which comes from entering the request of 

“gather_args(X,Y).” in the prolog terminal. The option to trace calls of predicates and variables 

starts when the user enters “trace.” into the terminal. The following is the listed output from a 

trace that comes from the gather_args query, which results from the algorithms of QUINE 

(Malloy, 2015): 

X = Y, Y = [] ; 

   Redo: (7) gather_args(_G8151722, _G8151723) ? Listinggather_args([], []). 

gather_args([+A|C], [B|D]) :- !, 

        unknown(port(A, B)), 

        gather_args(C, D). 

gather_args([A|B], [A|C]) :- 

        gather_args(B, C). 

gather_args(port(A), port(B)) :- 

        on_signal(A, B, _), 

        port(A), 

        port((B| A)). 

gather_args(file(D, E), G) :- 
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        '$append'(A, [tuple('All files', *.*)], B), 

        A=..[chain|B], 

        current_prolog_flag(hwnd, F), 

        working_directory(C, C), 

        call(get(@display, 

                 win_file_name(D, 

                               A, 

                               E, 

                               directory:=C, 

                               owner:=F), 

                 G)). 

win_menu:gather_args([], []). 

win_menu:gather_args([+A|C], [B|D]) :- !, 

        gather_arg(A, B), 

        gather_args(C, D). 

win_menu:gather_args([A|B], [A|C]) :- 

        gather_args(B, C). 

Figure 9 designates the port scanning as the “Best-Port First Search” (BPS) given that the 

reference of “best” is to the optimized search function along with the principle of an attacker 

desiring the most vulnerable entry point. 

 
Figure 9. QUINE Port Arguments – Output as Viewed in the SWI-Prolog Debugger 
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 The binding of T0 to [] is a signifier of both the ability to again structure lists from the 

scan as well as the capability to further refine the use of the best first search. This is possible by 

restructuring the computations dynamically at runtime if one chooses to do so. If required, the 

ability to set T0 to X from the output listed by the gather_args query, in addition to the [_S1] 

argument shown in Figure 8 (see page 39) as a binding to a port, the hypothesis of the list 

resulting is of forensic information associated with that port. 

Virtual Coherence and Entanglement 

The C-NOT operation from the selected quantum gates for this circuit adds to systemic 

validity of this quantum circuit model. To retain fidelity to the research Turchette and the 

researchers performed, developments require coherence and entanglement (Turchette, et al., 

1995, p. 4714). Thus, Figure 10 illustrates the fidelity between this research and the requiments 

set forth by Turchette’s team for the measurment of conditional phase shifts in quantum 

computing (Turchette, et al., 1995, p. 1411). Figure 10 shows coherence between the qubits 

⟨000|110⟩ along with the superposition of qubits ⟨010|100⟩. 

 
Figure 10. Superposition and Coherence – Circuit as Viewed in the QuIDE Environment. 

 

 Figure 10 has a probability allowing strong confidence in the amplitude with a value 

of(−1.0 ∗ 0.0𝑖), while the effect upon it is essentially a form of C-NOT operation given that the 

qubit in the initial state was |000⟩ yet the collapse in probability is upon a new qubit |010⟩ as 
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required according to Equations 2-6 (see page 5). The final confirmation that coherence exists 

within the quantum circuit is supported by the coloring rules of the qubits ⟨000|110⟩ at values 

⟨0|6⟩ in addition to the superposition seen from the coloring rules of ⟨2|4⟩ (see Figure 10).  

By pursuing the principles behind logic bombs in conjunction with developing necessary 

system conditions for quantum computing, the results in this research set forth critical aspects to 

any form of mitigation against quantum computing, or the deployment of security systems based 

upon quantum computing. The applications of inversion are possible using logical structures 

within QUINE. Ivan Bratko’s code, despite the modifications is specifically an application to 

create a knowledge base and report using inference (2013, p. 386). QUINE operates with 

inversion principles using concatenation functions. This concatenation, though perhaps useful to 

some degree is not an accurate implementation of quantum computing algorithms. Figure 11 

shows the utility in key bindings and inference capable by the algorithms. From Figure 11, 

Figure 12 results, producing classification of determined variables in network communication 

from an unknown argument. Figure 11 is the internal reasoning function of QUINE as is 

producible by the algorithms implemented. 

 
Figure 11. Classification Argument – Output as Viewed in the Prolog Debugger 

 The conjunction of the modified knowledge-inference engine with the mitigation script 

may further implementing the computations to isolate identifiable malware hashes or perhaps 

even create new hashes to mitigate polymorphic viruses autonomously. Figure 12 shows the final 

step of the arguments that follow from the internal reasoning of the QUINE expert system 

knowledge inference engine. 
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Figure 12. Variable Classification – Output as Viewed in the Prolog Debugger 

The output of QUINE in Figure 12 demonstrates the capability for tactics relying on 

automated or human involvement. Should this schematic of an expert system enter use, humans 

must remain in control of each decision, for not only resilience, but safety as well. 

Wave Filters and Encryption 

The conjunction of inherent entropy to the surface throughout the system is a matrix 

transformation of the applied tensors. This surface tension with a rotation upon the central radial 

propagation mechanic produces Equation 61. Equation 61 is a period of prime locations upon the 

x-axis with a root of complex identity. The period (2𝜋) and root (𝑛) as element of(ℤ) is periodic 

in (𝑥) and exhibits promising wave propagation mechanics. 

{2𝑖
180(

𝜋

2
−1)

𝜋
°𝑒−𝑖𝑥 − 2𝑖

180(
𝜋

2
−1)

𝜋
°𝑒𝑖𝑥}      (61) 

The graphs shown illustrate that a complex wave function through the y-axis may possess 

two simultaneous wave propagation patterns that are an active interaction with the respective 

imaginary component. The wave propagation patterns are promising findings from this research. 

The pertinent resulting algorithmic expression for the construction of a radial-wave shield 

graphically depicts the interaction of complex wave functions. Further analysis suggests a 

consistency of the set of identities resulting from this research to some parent function of 

transcendental and complex identity. Equation 62 is an additional transcendent identity for 

algorithmic implementation as well as radial wave shielding with engineered antennae. 

{𝑒−𝑖𝑥 − 2𝑖}          (62) 
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Figure 13 implies an ability of a relative interaction between the real values and complex 

conjugates. The relationship between interactions of wave mechanics as shown by Figure 13 

illustrates the corresponding elements of the real and imaginary components to the complex 

identity of Equation 62 (see page 43). The ability for coherence and entanglement within the 

wave function of Figure 13 is an algorithm, which produces the surface tension allowing for 

interception of malicious signals. 

 
Figure 13. {ℜ , ℑ} Correspondence – Function as Viewed in Wolfram Mathematica 

 

The difference in wavelength between Figure 14 and Figure 13 suggests the ability for 

radial shield mechanic as an algorithmic identity to manipulate the convergence of the wave 

function of the y-axis with the initial entropy of the cipher inside the principle ideal ring. Figure 

14 exhibits excitation of phase-states within the higher-order tensors. 

 
Figure 14. {ℜ , ℑ} Mapping - Function as Viewed in Wolfram Mathematica 

 

The resulting support suggests the ability of a real-quantity to produce a complex effect 

from the generation of a bound imaginary wave and shows a promising capability of wave 

mechanics to be implementable as engineered for this research. This forms the coherence 

between ultraviolet radiation and radio waves graphically displayed by real and imaginary 

bijective correspondence. This is strongly suggested by Figure 15. Figure 15, as shown by the 
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rotatation displayed, implies a wall effect as a general surface from a perturbation of (𝑛) values 

along (𝑥). Figure 15 of Equation 63 is the effect of a curl in the vector(𝑗)⃗⃗⃗⃗  ⃗. 

(𝑛−𝑖𝜋𝑥 − 𝑛𝑖𝜋𝑥)          (63) 

 
Figure 15. Curl Decomposition – Function as Viewed in Wolfram Mathematica 

Figure 16 results from Equation 63 and for some (𝑛 ∈ 𝑥) with a rotation(𝜃) a manifold 

thus allows elliptic curve cryptography (ECC) from this system. In terms of ECC, there is more 

necessary. Figure 16 is curling of the x-axis which is the vector of light propagation expressed by 

a transcedent algorithm which adjusts the theta values upon the imaginary number (𝑖) such that 

the theta value at (0.1) exhibits characteristics of decomposition. 

 
Figure 16. (∇𝑥𝑗) – Function as Viewed in Wolfram Mathematica 

 

Figure 17 shows an elliptic curve near the center of the graph as a rotation of(𝑥) along 

the center of the manifold. Equation 64 is the generator function of Figure 17. ECC operates 

using a generator function such as this; however, Equation 64 has a cofactor of at least two. 

(2𝑒−(𝑖(𝜋𝑥)) − 𝜃𝑖(𝜋𝑥))          (64) 
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Figure 17. ECC Curl – Function as Viewed in Wolfram Mathematica 

 

 Figure 17 demonstrates where upon the field a complex number may lay, the least lower 

bound (LLB) is a complex root of this system. The LLB is a curl of lambda upon the x-axis, 

which is a complex vector (𝑗)⃗⃗⃗   across the vector space. The curl of the vector is a function, which 

shows a curl(∇𝑥𝑗). The vector(𝑗)⃗⃗⃗   at ~(−0.2,0) creates a point of propagation to mitigate 

incoming malicious signals. Figure 18 illustrates the wavelength(𝜆𝑦) in coherence with the 

ultraviolet light spectrum. 

 
Figure 18. (𝜆𝑦) – Function as Viewed in Wolfram Mathematica 

 

The plot of(𝜆𝑦) shown by Figure 18 (see page 46) results from Equation 65. The propagation 

mechanic exhibits the behavior of the creation of light given the vector upon which the trajectory 

follows. 

{2𝑒−𝑖𝜋𝑛 − 2𝑒𝑖 𝜋(𝑛)}          (65) 

 The trajectory of (𝜆𝑦) is a curve between the interval (𝛼, 𝛽) where the path towards the 

point(𝛼) is a vector of light generation. The point(𝛽) is the bottom eigenstate of this system and 

is expressed by the radial propagation mechanic such that Equation 66 results. 
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{−
𝑖𝑒180°(𝜋)

√2
+ 𝑒−180°𝑖𝑥}         (66) 

Where (𝑛 = 𝐸), and  (0 < 𝑦 < 1) Equation 67 is the resulting propagation and exhibits 

excitation of the wave function. Figure 19 illustrates the phase shift within the wave function. 

{(ⅇ−ⅈ𝒙 − 𝟐ⅈ)}           (67) 

 
Figure 19. (𝜆𝑥) – Function as Viewed in Wolfram Mathematica 

 The algorithmic removal of the singularity within this system serves both as a function of 

trapdoor capabilities within the ECC cipher as well as the handshake method. This expression is 

the attribute of the zero of the system, which is analogous to a NULL, or blank value within the 

RSA 4096 public key cipher. The removal of the singularity is a demonstration of further 

feasibility in the application of the QUINE algorithms in conjunction with the mathematical 

identities so engineered. The solution to remove the singularity is Equation 68. 

{2𝑒−𝑖𝜋𝑛 − 2𝑒𝑖 𝜋(𝑛)},          (68) 

Figure 20 is the point of intersection at the zero of the system that demonstrates a node of 

coherence. This is a graphical representation of the solution to remove the singularity by virtue 

of Equation 68 (see page 47) along the y-axis as a variable of (𝑛) value. Figure 20 is a wave 

function of a value (𝑛) upon the z-axis. 
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Figure 20. (𝜆𝑧) – Function as Viewed in Wolfram Mathematica 

 

 The following integration of Equation 69 over the interval (−1,1) results in a Taylor 

expansion at (𝑥 = 0) in(𝑧). 

∫

{
 
 

 
 {(2 exp (−(𝑖(𝜋𝑥))) −

𝜃(𝑖(𝜋𝑥))

(2𝑖𝜃𝑒)−𝑖𝑥
− (2𝑖𝜃𝑒)𝑖𝑥)𝑑𝑧}

=

{2(−(2𝑒)𝑖𝑥𝜃(𝑖(𝜋𝑥))(𝑖𝜃)𝑖𝑥 − (2𝑒)𝑖𝑥(𝑖𝜃)𝑖𝑥

+ (2𝑒)𝑖𝜋𝑥} }
 
 

 
 

1

−1
     (69) 

 The final resulting capabilties of this system are demonstrated in terms of a Riemann-

Hilbert intersection, where the creation and subsequent propagation follows upon a curve such 

that the resuling field is homomorphic and surrounds specific coordinates upon the x-axis. This is 

represented by Figure 21, which is a mapping of Equation 70 (see page 49). 

 
Figure 21. Riemann-Hilbert Intersection 1 - Function as Viewed in Wolfram Mathematica 

 The ceiling function of the complex conjugate upon the cube of pi, as subtracted from the 

calculated existence of a unique analytic function (see Appendix B, page 5) produces the 

necessary gravitational analog serving as the trapdoor of the cipher. This is expressed as 
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Equation 70. The shield propagation as a surface tensor through the complex identity of Equation 

70 upon the x-axis is significant proof-of-concept for a radial, standing wave mechanic. 

{⌈𝜑⌉ = (12.511 − (
𝑧4

𝜋3
))}         (70) 

 Equation 71 is a proportional integration of the vector space in conjunction with the final, 

unique complex analytic function. The demonstrability of the use-case for Equation 71 is 

expressible by Figures 22 and 23. Figure 22 demonstrates the complex roots of the plane, as well 

as the transformational capabilities of the manifold. Equation 71, which produces Figure 22, is 

representative of the boundedly compact manifold necessary for subsequent mitigation. 

{{−
𝒛𝟒−𝟑𝟖𝟕.𝟗

𝝅𝟑
}  ∝ {

ⅆ

ⅆ𝒛
(𝟒(𝟏𝟕𝟗. 𝟐𝟏°) −

𝒛𝟒

𝝅𝟑
) = −

𝟒𝒛𝟑

𝝅𝟑
}}      (71) 

 
Figure 22. Riemann-Hilbert Intersection 2 – Function as Viewed in Wolfram Mathematica. 

 Figure 23, which is producible by the same unique analytic function, is a Riemann sphere 

mapping that denotes a particle and wave duality with collapse. The collapse of this function 

must serve as the triggered propagation pattern of coherence between the complex algorithms 

discussed in this research. The sympletic space produced within the satisfied (ℌ) as engineered, 

conclude the proof of concept in the feasibility of implanting the radial dynamics by virtue of 

higher-order tensor products of a principal ideal ring. Figure 23 denotes the producible shield 

within an orbital surface structure. 
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Figure 23. Riemann-Hilbert Intersection 3 – Function as Viewed in Wolfram Mathematica. 

 

 Figure 24 is a further transformation of Figure 23 in that the mesh of the corresponding 

values upon the z-axis is reducible to a smoother structure. This demonstration is in accordance 

with the principles of Gaussian channels. The bandwidth allows manipulation such that 

transmission with reduced error or “noise” creates a dual-purpose channel within the same 

spectrum. 

 
Figure 24. Riemann Sphere Map – Function as Viewed in Wolfram Mathematica. 

 Figure 24 as depicted is the action principle within the removable singularity solved for 

in this work. The group topology of the hyperdimension in Figure 24 signifies the necessary 

boundary conditions for radial wave mitigation against acoustic threats. By virtue of this 

research, acoustic mitigation via methods of coherence in radial wave mechanics is feasible. 

Discussion of the Findings 

Networks undergo constant threat, and evolving mitigations are a necessity. The 

difference in wavelength calculated within the structure of the novel system developed suggests 

the ability for the wave functions of light as radio frequencies tending towards the ultraviolet 

spectrum to interact predictably within the confines of this system. The polar coordinate and 

wave mechanics embedded as a trigger event must create a wave propagation. The use of the 
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trapdoor function as a trigger event to begin wave propagation would be a mitigation against the 

classical acoustic attacks to break RSA encryption. 

The combined event of radio wave propagation along with the series expansion within 

the trapdoor is a full implementation of this defense system. The infinitely recursive lattice 

within QUINE activated upon a prime number value can be coupled with the node at which a key 

value prime is factored by an attack. To implement the system as a successful defense against 

quantum threats should not be retroactive or reactive in use. 

The threat of a quantum computer attack against a conventional system poses a risk of 

degrading traditional communication and operations of national critical infrastructure if the 

quantum computer should be under malicious control. Shor’s algorithm is a benchmark for the 

performance of a quantum computer on a large scale. For cyber security mitigation in quantum-

computing networks, the benchmark of mitigation should be predictive analytics, and the 

scalability of such must be a factor of resilience. 

Classical Defense against Quantum Threats 

Entangled and coherent attacks propagating from quantum computers may hypothetically 

possess the ability to enter entanglement with a targeted device maliciously. To construct a 

defense system to mitigate such potential threats, using a system of propagating radio waves to 

forcing continuous decoherence around a defended network may shield against attempts of 

malicious targeting. The applications of the ultraviolet light, as a possible defense component, 

rely on the electromagnetic aspect of ultraviolet light. Ultraviolet light cannot ionize an atom, but 

the properties of radio waves, another form of light, can couple with conductors if the distance is 

within the propagation of the wave. Thus, the exchange of radio waves with ultraviolet light may 

alter hardware. 
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Hilbert spaces are requirements to any quantum based mathematics for applications to 

computation, and therefore must be present in some way for security systems relying on quantum 

mechanics. During the initial stages of this research, the power of quantum computers 

understood in terms of threats to cryptography was not the focus, but applications for defending 

against quantum cracking is worth noting. Users of the Internet may not know that the 

transmission of data between their computer and the websites they visit rely on strong encryption 

to protect them, but with quantum computers, encryption using RSA and similar algorithms 

cannot mitigate cracking by a quantum computer. The promises of advanced elliptic curve 

cryptography suggest greater potential to mitigate the threat of quantum computers to classical 

encryption. 

Given the fact that classical computers themselves operate using quantum mechanics, but 

fall to the limitations of classical systems, it is apparent that with the research conducted by 

Toshiba and their affiliates at Cambridge, quantum computing can affect classical systems. The 

level of threat posed by this finding, in conjunction with the currently occurring race to construct 

quantum communication, emanating from satellites, provides support for the reasoning behind 

use of electromagnetic waves for computer network defense. Given Earth’s magnetic field 

inhibits quantum communication, conceptualizations of energy excitation using radio waves to 

create a shield appears tenable. 

For instance, the acoustic hacking of the RSA GNuPG key suggests a potential 

adjustment of radio frequency emitted by a CPU to act as mitigation, not a vulnerability. If such 

mitigation fails by transitioning from a hyperfine state as demonstrated by Turchette and their 

research, to a vector space of reflection using a curl along the orbital axis of momenta a defender 

can feasibly cause decoherence of the malicious signal or destroy the malicious signal. Should 
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the mitigation succeed, the defensible attack should incorporate the research done from 

Cambridge and Toshiba where conventional telecommunication fibers carry quantum 

information. If the Cambridge-Toshiba experiment is repeatable, the ability to extract a GNuPG 

RSA key from a target system is feasible with quantum communication using classical devices. 

The next line of defense is a next-generation seed algorithm for elliptic curve cryptography. 

Applications of space as a vehicle for quantum communication may be promising, but is 

not necessary in all respects. In addition, with cryptography using the principles of elliptic curve 

geometry, of which can be complex the ability to conjoin the principles behind orbital momenta, 

a vector space, and trapdoor functions of path integrals over the space can be an advancement of 

seed algorithms for elliptic curve cryptography. Path integrals in quantum fields over vector 

spaces may provide an intractable problem applicable to mitigating attempts to break encryption. 

The intractability may arise given that the paths themselves are vectors within a vector 

space. The inability to predict the seed value compounds when using pseudo-random 

transformations of the area under the curves from the motion of points. The end goal is a 

defensive system such that any quantum computer attack against a conventional computer would 

trigger an automatic response using combinations of conventional hardware and quantum based 

computation. The distribution of a propagating wave as mitigation will suffice to disrupt 

quantum computer threats using wave-particle interaction. 

Vulnerability of RSA 4096 Key Cryptography 

 The vulnerability of the RSA cryptographic system extends further than emission of key 

values through acoustic leaking, but also within experimental protocols ubiquitous to certain 

browsers. The vulnerability within RSA is the foundational algorithms itself, which assume AES 

in certain ubiquitous protocol deployed, yet not secure. Figure 25, for the purposes of this 
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discussion, is an example graph of network communication generated from a comma-separated 

value. An analysis reveals a pattern of communication between end-user and server. 

 
Figure 25. RSA Set 1 – Function as Viewed in Microsoft Excel 

 Figure 25 when analyzed further produces Figure 26, which is a second set of the same 

network traffic, though reduced to a specific protocol. The pattern of communication becomes 

more apparent along with values for factorization. Upon reduction of cipher values, an 

algorithmic methodology generalized to crack RSA ciphers is possible to the degree that the 

value of the key length as a function of a unique division results in the key system’s exchange, 

length, and values. 

 
Figure 26. RSA Set 2 – Function as Viewed in Microsoft Excel 

 Figure 26 necessarily leads to a key decryption based upon the factorable values inherent 

in RSA key exchanges. The resulting Figure 27 illustrates the handshake of the network 

communication as defined by the protocol under analysis. Figure 27 shows fully permissible with 

the methods employed how the null values and “blank” spaces are the start of the headers for the 

cipher. 
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Figure 27. RSA Crack 1 – Function as Viewed in Microsoft Excel 

 Figure 28 shows the ASCII values of the now decrypted RSA 4096 cipher under analysis. 

The vulnerability as shown exists through the entire communication between end-users of this 

browser, which utilizes an experimental protocol. 

 
Figure 28. RSA Crack 2 – Function as Viewed in Microsoft Excel 

 With the ASCII values determinable as illustrated by Figure 28, Figure 29 shows the full 

handshake pattern of this specified RSA cipher. The ability to determine this required very little 

in methodology, once the comma-separated values are extractable from network traffic generated 

by non-abnormal browsing such that the only destination was the home page of the browser, 

which created this protocol. 
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Figure 29. RSA Handshake and Key – Function as Viewed in Microsoft Excel 

 With the entire RSA 4096 cryptography now mapped and cracked, it is evident that the 

vulnerabilities within this are in need of both reevaluation and removal from operation. The 

suggested replacement is feasible and is supportable by this body of work, though further 

refinement and development is necessary. 

Complex Elliptic Curves and Signals 

 The NSA understands the threat posed by quantum computers against encryption because 

the impact it has on sensitive material owned by the United States government. In terms of the 

threat posed by a quantum computer, there is no limitation in attacks it could perform, or to the 

computations, a quantum computer can perform. At the heart of computation and at the heart of 

physics and mathematics are logical relationships and operations. Physics is reducible to 

mathematics, and so is quantum computing. Therefore the research focused mostly on the 

equations surrounding the principles of physics and mathematics as well as the conditions 

required for computational satisfiability. This is to aid in both understanding for, and 

development of mitigation capabilities for tactics, techniques, and procedures in computer 

network defense. 

 The application this research has for policymakers is difficult to address. This research 

allows classification of what constitutes a quantum computer or not, should they ever be limited 

to governments and academia for use and operation. Should a cybercriminal ever construct a 
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quantum computer for malicious purposes the effects would be catastrophic for any victim. 

Instead of having to spend time infecting target machines, the infected machines could possibly 

suffer an attack instantaneously with entanglement, and transport any information from the 

infected machine to the attacker instantaneously based on coherence. 

 In as much as a physical attack against a computer destroys the logical operations of it, 

logical operations can destroy physical targets. Defense and mitigation measures to protect 

computers from physical and logical attacks vary in success, but are extremely difficult to 

maintain without considerations of resilience. Quantum computers of 2015 will most likely 

remain the research focus of academics but may soon be the tools of governments. Even if this 

proves accurate, the threat of a malicious criminal managing to command and control a quantum 

computer supersedes a nation-state threat. 

 Quantum computer networks for communication do not need traditional network security 

monitoring tools given the use of coherence and entanglement. By the very nature of quantum 

communication, there is an immediate alert of any would be eavesdroppers and the data is 

destroyed. The wave function of the particle given the energy and the momentum dictates 

aspects of the behavior of the wave function. Any act of observing the communication alters the 

position, or momentum, which notifies Alice and Bob of an attack.  There is potential for 

mitigation using conventional programming with a Gaussian channel using a synchronous 

concurrent algorithm so the discrete time interval and vector manipulation is analogous to a logic 

bomb’s trigger event. In place of a malicious result from the logical trigger, an automated call 

function of the correct argument could hypothetically implement a logical phase shift in a 

traditional cyber security system. With this manner of defensive mitigation in place, the need for 

final human authority would be critical to prevent a malfunction of the automatic response. 
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Expert Security Systems 

The use of an expert system or even aspects of expert systems for use in cyber security 

are an implementation of artificial intelligence. The use of artificial intelligence in cyber security 

may cause concern to some, though the actual implementations, which are possible, do not create 

a significant threat. The need for human interaction with cyber security comes with the 

implementation of resilient network defense. This remains true with systems that have artificial 

intelligence incorporated in the algorithms. The difference between automation and artificial 

intelligence is the system with artificial intelligence uses reasoning and can explain the reasoning 

to a human. A firewall uses a rule-based system to act against threats, but an expert system is 

capable of performing an action that an expert in the field would choose. 

The human behavior behind an attack is unpredictable to a large degree, as much as any 

human action is. The ability for an expert system to conduct any form of network operations 

requires predictability of human reasoning to some extent. A full expert system conducting 

network operations would not be a safe implementation of artificial intelligence. An expert 

system that informs a human in decisions that would supplement network operations is a safe 

implementation of artificial intelligence. If a fully intelligent and autonomous application were to 

malfunction, the results could be a perceived mitigation towards false-positive threats both 

external and internal. 

An internal action of mitigation by an artificially intelligent application if malfunctioning 

as an “implosion” would be the internal system destroyed in a false-positive response. The 

converse of that, an “explosion” would be an instance of the same network defense system 

perceiving all outside networks as a threat and attacking those systems. In either situation, a 
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simple control mechanism of human authorization would prevent each form of malfunction by 

preventing a false-positive trigger. 

Limitations 

The necessary background in understanding the mathematical and physical components 

of quantum computers, allowing strategic defense to be developed is incomplete. SWI-Prolog is 

not simple to deploy in all situations. While those with strong backgrounds in formal logic may 

find writing code in prolog somewhat straightforward, there can be issues such as with this script 

due to cumbersome variables distributing predications in unexpected ways. For example, the 

results when attempts to test the DDE request feature targeting a port produces an issue of values 

equivalent between port and “ipa,” which stands for Internet protocol address (IPA). While this 

may not be a fatal error, given that it may attribute a port under attack to the IPA the attack is 

emanating from may also erroneously mark the port equivalent with the IPA. As with any 

research, the greatest limitation is the time allotted for conducting such studies. 

Recommendations 

 Future efforts making use of the research conducted within this thesis reach beyond the 

field of cyber security. First, the effort uncovers a method by which quantum gravity as a union 

of Einstein’s relativity and quantum understandings of wave-particle duality is both predictable 

and testable. This is possible by methods of acoustic attacks and subsequent triggering of the 

acoustic shield, thereby drawing the malicious wave into the shield’s field within the Riemann-

Hilbert intersection. This is analogous to the curvature of space-time relative to a gravitational 

field. 

 Secondly, and explicitly applied to security, are explorations of attack and defense 

involving quantum computers, quantum networks using traditional telecom fibers, and the ability 
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for a conventional computer to command and control a quantum device or network. Cyber 

security is intrinsically both national security policies, as well as a rapidly dynamic environment, 

which are all hard to qualify and quantify. The tipping point of debates on what constitutes an act 

of cyber war may occur in the form of a logical operation resulting in subsequent and devastating 

affects to human lives. Therefore the utmost care and precautions involving any research within 

the purview of quantum hacking cannot be stressed enough. 

 Lastly, the tactic of destroying physical systems with logical operations using procedures 

reliant on quantum technology with Gaussian techniques need be both defensible and 

undiscoverable. If under development or under consideration for development, the system need 

be conducted or deployed within an environment beyond the next-generation of cyber security 

systems, e.g. not only air-gapped. If unnecessary to use any computer system or electronic 

communication, the research must only be conducted using handwritten proofs, schematics, and 

communication until which a time may come to use such a device. 

Future Research Recommendations 

Remaining questions include to what degree a quantum computer can affect a 

conventional computer with next-generation defenses, as well as to what degree a quantum 

computer could affect physical systems. With the ability for logical operations, which may 

concretely influence the physical world, the development of both cyber and quantum weapons 

will only increase in focus for nation-states. The threat this poses to any opposing state by a 

malicious actor, be they another nation or a cyber vigilante, remains for mitigation. A 

recommended avenue for future research is not the development and deployment of such 

weapons, but rather the rapid development and deployment of defense systems against such 
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attacks. Additionally, it remains how a conventional computer could exploit or attack a quantum 

computer.  

If the current cryptographic system of RSA is vulnerable to fewer efforts less than 

acoustic hacking, the capabilities of a technique used by a nation-state operating a quantum 

computer pose valid levels of threat to security. In addition to this is analysis of trends and 

patterns within network communication of experimental protocols that reveal the full cipher of 

4096-bit RSA encryption, the threat of a quantum computer under the command and control of 

malicious actors, regardless of affiliation, will prove devastating by virtue of principle. 

Using discrete time as a Gaussian channel to create a vector of time, then using a 

complex algorithm for elliptic curves where the indices of imaginary components are a change in 

prime factorization without respect to entropy a new cryptographic system may be fully 

implementable rapidly. The use of a Gaussian channel curl by incorporating a Riemann surface 

as developed is a promising future direction of research as a reflective trapdoor within ECC. 

Conclusion 

Radio waves may contain the ability to form a shield against attempts of intrusion, 

perhaps by a process of using the angular momentum to converge the propagation of waves as an 

eigenfunction upon ultraviolet light. The complex singularity of the radio wave has an amplitude 

equal to a resulting rate of coherence from Turchette and fellow researchers in their findings. By 

applying the rotation of(𝜃) as a value in a subsequent function of which the period is not(𝜋), a 

greater generation of a cyclic intersection between complex and real conjugates may aid in 

mitigation of quantum cracking. While there are artistic aspects of security that remain in the eye 

of the beholder, the concept of cyber security as a science is open for exploration and new 

frontiers. 
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While this work uses physics tied to number theory and components of artificial 

intelligence, perhaps the farthest reach conceivable result based on this work is to test the 

concepts of the orbital angular momentum as a trapdoor for recursion in the curl of a curve along 

an ellipse. Exploration of this requires the use of either an additive point without respect to the 

cofactor, or an eigenvector. The conceptualization of using logic bombs as mitigation is 

incomplete, though the implications and use of such systems appear to be a strong line of 

defense. Rejecting the idea that classical computers are incapable of executing quantum 

mechanics as an algorithmic implementation with the research conducted is feasible. Given 

classical computers operate using quantum mechanics the threat of a quantum computer for a 

malicious network attack or network exploit is unrealized, not impossible. Based on reflection, 

creating a hyperbolic surface tension curl to force decomposition of signals with radio waves, 

such that incoming malicious traffic undergoes reflective decomposition will aid in the defense 

against acoustic hacking.  
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Appendices 

Appendix A – QUINE 

Available for download at: https://github.com/FunctionAnalysis/qi-net/releases/tag/v1.0.1  

 

:-op(1200,xf,~). 

fact:device(input). 

fact:device(udp). 

fact:device(syn). 

fact:device(ipa). 

fact:device(port). 

fact:(connected(input,port)):- 

fact:(connected(port(2),computer2)). 

fact:(connected(port(3),computer)):- 

fact:(connected(port(4),computer)). 

parse:connected(syn,udp,ipa):-parse:connected(syn,udp,syn),input(syn,udp,ipa). 

parse:device(syn,udp,ipa). 

parse:device(defines,classification,port). 

parse:(output(classification(syn|X,udp|Y,ipa|Z))):-input(unknown(X,Y,Z)). 

prolog:error_message(dde_error(Op,Msg)) --> 

 [ 'DDE: ~w failed: ~w'-[Op,Msg] ]. 

unknown(output):-unknown(input). 

classification(X):-(input(syn|[X])). 

classification(unknown):-input(unknown). 

classification(syn,udp,ipa):-unknown(input). 

input(X,Y,Z):-port(input(X,Y,Z)). 

input(X,Y,Z):-input(unknown(syn|X),(udp|Y),(ipa(Z))). 

input(X,Y,Z):-parse:device(X,Y,Z). 

input(X,Y,Z):-parse:connected(X,Y,Z). 

input(Node,X,Y):-edge(X|Y,Node). 

input(port):-fact:device(port). 

input(unknown(classification(Y,Z,X))):-output(unknown(syn(X)),(udp(Y)),(ipa(Z))). 

input(ipa):-unknown(input). 

input(unknown(input)). 

input(unknown):-unknown(input). 

input(unknown(X,Y,Z)):-input(X,Y,Z). 

output(X,Y,Z):-classification(X,Y,Z). 

output(X,Y,Z):-(classification(X),(Y),(Z)). 

matrix(node(A,B,C),edge([_]),bestf([],9999)):-matrix((node(A,B,C;d(_))),port(A),input(A)). 

matrix(Line,Node,Distance):-edge(Line|Node+Distance). 

matrix(A|Node_x;(B|Node1,(C|Node3)):-edge(A|Node1),edge(B|Node3), edge(C|Node_x)). 

node(d([prime+1=prime])). 

node(d([prime+2=prime])). 

node(d([prime+1=prime])). 

edge(X,Y):-(matrix(lattice,([])|X,Y)). 

https://github.com/FunctionAnalysis/qi-net/releases/tag/v1.0
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edge(X,Y):-fact:connected(X,Y). 

edge([Node1,Node2];[(C;Node3)],[_]):-matrix(Node1|_,Node2|C,Node3). 

edge([A,B];[B,C];[C,B]):-node(3),edge([A,B,C]),distance((node + edge = 

Distance)),matrix(edge,node,Distance). 

edge((_;_;_):-matrix((edge),node(2),node(3))). 

edge([a]):-(number(prime),(edge([c]))). 

edge([b]):-node(number(_)). 

edge([c]):-node([prime1,prime2,prime3]|([a];[c];[b])). 

distance(Prime):-

[(node(1),(Prime))]+[node(2),(Prime)]+[node(3),(Prime)]=(node(1+2=2),node(2+3=2),node(1+3

=4),edge(3)). 

'$dde_disconnect'(ipa(Service, Topic, _Self)) :- 

 dde_service(Service, Topic, _, _, _, _). 

 '$dde_disconnect'(ipa(Service, Topic, Handle)) :- 

 asserta(dde_current_connection(Handle, Service, Topic)). 

 '$dde_disconnect'(ipa). 

'$dde_disconnect'(Handle) :- 

 retractall(dde_current_connection(Handle, _, _)). 

port(_) :- 

 strip_module(port((Module)--> Plain),Module,Plain), 

 Plain =.. [Vuln|Args], 

 gather_args(Args, Values), 

 Goal =.. [Vuln|Values], 

 Module:Goal, 

 port(port->close). 

port(close):-(rl_write_history(port)). 

port(classification(on_signal(Vuln|Scan,Vuln|Open,Open))):-(parse:output(Scan)). 

port(retractall(Vuln)):-port(Vuln). 

port(retractall(parse:parse(Vuln))):-port(Vuln). 

port(Open|Scan):-('$dde_execute'((port(_)),Scan,Open)). 

((port(Access;Open)):-('$dde_request'(((Access)),write([vulnerabilities]),(Open),(port(_))))). 

(((port(IP)) :- 

 dde_current_connection((Scan|Vuln),Scan, Vuln),IP)). 

port((_,_)):-'$dde_disconnect'((_,_,_,_)). 

gather_args([], []). 

gather_args([+H0|T0], [H|T]) :- !, 

 unknown(port(H0, H)), 

 gather_args(T0, T). 

gather_args([H|T0], [H|T]) :- 

 gather_args(T0, T). 

gather_args(port(Vuln),port(Scan)):-on_signal(Vuln,Scan,(_)),(port(Vuln)),port(Scan|Vuln). 

gather_args(file(Mode, Title), File) :- 

 '$append'(Filter, [tuple('All files', '*.*')], AllTuples), 

 Filter =.. [chain|AllTuples], 

 current_prolog_flag(hwnd, HWND), 

 working_directory(CWD, CWD), 
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 call(get(@display, win_file_name, 

   Mode, Filter, Title, 

   directory := CWD, 

   owner := HWND, 

   File)). 

rl_write_history(port):-rl_read_history(port). 

'$dde_request'(syn, port(Vuln), ipa(Vuln), udp). 

'$dde_request'(Handle, Topic, Item, Answer) :- 

 dde_current_connection(Handle, Service, Topic), 

 dde_service(Service, Topic, Item, Value, Module, Goal), !, 

 Module:Goal, 

 Answer = Value. 

'$dde_request'(_Handle, Topic, _Item, _Answer) :- 

 throw(error(existence_error(dde_topic, Topic), _)). 

'$dde_request'(Service, Topic, _Self,Vuln) :- 

 dde_service(Service, Topic, _, _,Vuln, _). 

'$dde_request'((Vuln|Scan),Vuln,Open, (_)):-(dde_current_connection(Scan,Vuln,Open)). 

'$dde_request'(Handle, Topic, Item, Answer) :- 

 dde_current_connection(Handle, Service, Topic), 

 dde_service(Service, Topic, Item, Vuln, port, close(Vuln)), !,Answer = close. 

'$dde_request'(_Handle, Topic, _Item, _Answer) :- 

 throw(error(existence_error(dde_topic, Topic), _)). 

'$dde_execute'(port, +Handle, Command) :- 

 throw(error(existence_error(dde_topic, +Handle),Command)). 

'$dde_execute'(port(Vuln),write([vulnerabilities]),(command|(port(Vuln)))). 

'$dde_execute'((Open|Scan),(Output),port(Open,Vuln,Output)):-('$dde_request'(topic = 

Vuln,Scan,Open,Output)). 

'$dde_execute'(port(Open), Vuln, port|Scan) :- 

 dde_current_connection(Open|port(Service) 

        , Scan, Vuln), 

 dde_service(Service, Topic, _, port, Scan, Topic), !, port(Topic|Vuln). 

'$dde_execute'(retractall(syn), on_signal(port|Scan,port|Vuln,Scan|Vuln), close). 

'$dde_execute'(Handle, Topic, Command) :- 

 dde_current_connection(Handle, Service, Topic), 

 dde_service(Service, Topic, _, Command, Module, Goal), !, 

 Module:Goal. 

'$dde_execute'(_Handle, Topic, _Command) :- 

 throw(error(existence_error(dde_topic, Topic), _)). 

(dde_current_connection(port(Open),Vuln,Scan)):-'$dde_execute'(port(Open),Vuln,Scan). 

((dde_service(Scan, _, _, _, ([_]),(_))):-(port(Scan))). 

prolog:error_message(dde_error(Op,Msg)) --> 

[ 'DDE: ~w failed: ~w'-[Op,Msg] ]. 

~(_):-not(_). 

~(P):-!,(fail),not(P);true. 

f( l(_,F/_),F). 

f( t(_,F/_,_),F). 
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h(ipa,syn). 

s(ipa,syn,udp). 

t(N,F/G,Sub):-l(N,F/G,Sub). 

l(N,F/G,Sub):-(t(N,F/G,Sub)). 

bagof(syn/ipa). 

goal(_):-goal(n). 

bestf(Vuln,Solution):- 

 expand(Vuln,l(Vuln,0/0),9999,_,yes,Solution). 

bestf([T|_],F):- 

 f(T,F). 

bestf([],9999). 

expand(P,l(N,_),_,_,yes,[N|P]):-goal(N). 

expand(P,Tree,Bound,Tree1,Solved,Solution):-port(P),port(Tree|Bound|Tree1;Solved|Solution). 

expand(P,l(N,_),_,_,yes,[N|P]):-goal(N). 

expand(P,l(N,F/G),Bound,Tree1,Solved,Sol):- 

 F=<Bound,(bagof(M/C),(s(N,M,C) , 

         port(Member|Vuln),(~(Member|Vuln)-

>[M,P],Succ)),!,succlist(G,Succ,Ts),bestf(Ts,Fl), 

    expand(P,t(N,Fl/G,Ts),Bound,Tree1,Solved,Sol);Solved=0). 

expand(P,t(N,F/G,[T|Ts]),Bound,Tree1,Solved,Sol):- 

 F=<Bound,bestf(Ts,BF),input(Bound,BF,Bound1), 

 expand([N|P],T,Bound1,Tl,Solved1,Sol),continue(P,t(N,F/G,[Tl|Ts]),Bound,Tree1,Solve

d1,Solved,Sol). 

expand(_,t(_,_,[]),_,_,never,_):-!. 

expand(_,Tree,Bound,Tree,no,_):-f(Tree,F),F>Bound. 

continue(_, _, _, yes, yes, open,_). 

continue( P, t(N, Fl/G, [Tl|Ts]), Bound, Tree1, Solved, Sol,_):- 

 insert(Tl, Ts, NTs), 

 bestf(NTs,Fl), 

 expand(P, t(N, Fl/G, NTs), Bound, Tree1, Solved,Sol). 

succlist(_, [], []). 

succlist(G0, [N/C|NCs], Ts):- 

 G is G0+C, 

 h(N,H), 

 F is G+H, 

 succlist(G0, NCs, Tsl), 

 insert( l(N,F/G), Tsl, Ts). 

insert(T,Ts,[T|Ts]):- 

 f(T,F),bestf(Ts,Fl), 

 F=<Fl,!. 

insert(T,[Tl|Ts],[Tl|Tsl]):- 

 insert(T,Ts,Tsl). 
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Appendix B – Supplemental Proofs 

Unique Existence of Complex Analytic Function(𝝋):  

Theorem: There exists some function (𝑓(𝑥) = 𝜑),  and{(𝑓(𝑧) = 𝜑) → [(⌊𝜑⌋ ∈ 𝑧)}  

Lemma: There exists some constant K where(𝐾 ≠ ∞), and((𝐾 = 0) ∈ (𝜃|𝐾))  

{((2𝐾𝜋 + 𝑧) ↑ (
𝑧

𝜋
)) ↑ (𝑥, 𝑦, 𝑧)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗}, where [4𝜃 ∑

(−1)𝐾((2𝐾𝜋+𝑥)(
𝑥

𝜋
)
𝐾

3
)

(𝐾!)3
∞
𝐾=0 ] 

Proof 

[⌊𝜑⌋ → (𝑖𝑒−𝑖𝜃 − 𝑖𝑒𝑖𝜃), (𝑓(𝑧) = 2𝜃2)] → (𝐾 = 0) 

Therefore {(𝑓(𝑧) = 𝜑) → [(⌊𝜑⌋ ∈ 𝑧)} where(𝐾 = 0). If {⌈𝜑⌉ ↑ ( lim
𝐾→∞

𝜑 ≅4𝜃)} where:  

[((4𝜃) ≅ 179.21°) ↑ (𝜃|𝐾)]. Therefore, (𝜑) = [4𝜃 ∑
(−1)𝐾((2𝐾𝜋+𝑧)((

𝑧

𝜋
)
𝐾

3
)

(𝐾!)3
∞
𝐾=0 ] where  

(𝜑) =

[
 
 
 
 

4 ∗ (179.21°|𝐾∑

−1((
𝑧
1) (

𝑧
𝜋)0

3

)

1

∞

𝐾=0

]
 
 
 
 

 

Then 

4 ∗ (179.21°|𝐾)∑−((
𝑧

1
) (
𝑧

𝜋
)
0

3

)

∞

𝐾=0

= [4 ∗ (179.21°|𝐾∑−(
𝑧4

𝜋3
)

∞

𝐾=0

] 

Where[(
𝑧4

𝜋3
) = 𝑤], and {⌈𝜑⌉ = (12.511 − (

𝑧4

𝜋3
))} 
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𝕳 Condition Satisfiability 

Theorem: x greater than zero is a time like vector and x less than zero is a space like vector. 
If x equals zero it is a null vector or light like. With this system, x represents the space-time 
vectors. 

(𝑥 ≠ 0, 𝑥2 ≅ 1), and{0−𝑖𝜋𝑛 − 0𝑖𝜋𝑛} = 𝑥. 

Lemma: 

∀(𝑥, 𝑦) ∈ ℌ, (𝑥, 𝑦) > 0, 𝑥 ≠ 0 

∀(𝑥, 𝑦) ∈ ℌ, ((𝑥, 𝑦) = (𝑥, 𝑦)) 

∀(𝑥, 𝑦) ∈ ℌ, (𝛼𝑥, 𝑦) = (𝑥, 𝑦) 

∀(𝑥, 𝑦) ∈ ℌ, [(𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧)] 

Proof: When {𝑥 = {0−𝑖𝜋𝑛 − 0𝑖𝜋𝑛}} (𝑛) must be shown not to reduce the value of (𝑥) to 

zero. Let(𝑛 = 0). If(𝑛 = 0 → 𝑥 = 0). 

∀𝑥{(𝑥 ≠ 0) → (𝑥 = 0−𝑖𝜋𝑛 − 0𝑖𝜋𝑛)} 𝑖𝑓𝑓 (𝑥2 ≅ 1). 

If (0−𝑖𝜋𝑛 − 0𝑖𝜋𝑛)2 ≠ 0, then(𝑥2 ≅ 1). 

(0−𝑖𝜋𝑛 − 0𝑖𝜋𝑛)2, 𝑛 = 0, {0−2𝑖𝜋𝑛 + 0𝑖𝜋𝑛 − 2} remains indeterminate and has odd parity. No 

solutions where (0−𝑖𝜋𝑛 − 0𝑖𝜋𝑛) = 0 exists. 

∴ 𝑥 ≠ 0 
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Cyclic Collinear Group: 

Theorem: (𝐺) is a homomorphic cyclic group of which (𝐻) and (𝐺) such that: 

{(
𝐺

𝐻
) , (𝑦𝑖𝑚𝑜𝑑(𝐻)), (𝑦𝑖 ≠ 𝐺)}. 

Lemma: Let Z be an element of H and K, [𝑍 ∈ (𝐻 + 𝐾)] and G as a cyclic function of an 

element of Z, [𝐺 = {�̂�: (𝑛 ∈ 𝑍)}] 

(𝐺 = 〈𝑎〉) 

Proof: Let [〈𝑎〉 ∈ {𝐺}] where (𝑎) is(�̂�: (𝑛 ∈ 𝑍)). Given[𝑍 ∈ (𝐻 + 𝐾)]. Such that when (𝑎 ↑ 𝑝) 

are in series,(𝑎0 + 𝑎1𝑝…𝑎𝑛𝑝𝑛
𝑛) and(𝑥𝑖 = 𝑝𝑛

𝑛), Then: 

{(𝑥𝑖 ∈ 𝐾) → ((𝐻 ⊕ 𝑥𝑖) ↑ (𝑍 ∈ (𝐾 + 𝐻)))} And {(〈𝑎〉 ≤ 𝐺) = (�̂�: (𝑛 ∈ 𝑍))} where  

(𝐺 = ∑𝑎𝑖𝑦𝑖) Moreover [𝑝𝑛
𝑛 = 𝑍 − ∑𝑎𝑖𝑥𝑖], then when{𝑡∗ = [𝐺 ↑ [𝑝𝑛

𝑛⨁(ℵ0 ∈
𝐺

𝐻
)]]} resulting 

in(𝑦𝑖 = 𝐺). 

If (𝑦𝑖 = 𝐺)(𝑥𝑖 ∈ 𝑍), (𝑓(𝑥𝑖) = �̂�) {(
𝑦𝑖

𝐻
) = (𝑦𝑖𝑚𝑜𝑑(𝐻))} and if true: 

{(
𝐺

𝐻
) = (𝑦𝑖𝑚𝑜𝑑(𝐻))}, But then(𝐺 = (𝐻⨁𝐾)), 𝑖𝑓𝑓 (𝐺 = 𝐾),  

∴ {(
𝐺

𝐻
) , (𝑦𝑖𝑚𝑜𝑑(𝐻)), (𝑦𝑖 ≠ 𝐺)} 

∎ 


